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MOTION OF AN ARTIFICIAL SATELLITE
IN AN ECCENTRIC GRAVITATION FIELD

V. G. DEMIN

ABSTRACT. In this book are presented analytical and
qualitative methods for studying the motion of
artificial satellites in a central gravitational
field, and also methods for constructing the inter-
mediate orbits of a satellite of an axisymmetrical
planet. Basic attention is directed to the problem
of two immobile centers and to its modifications

which may be relevant to the science of celestial
ballistics. We present a classification of the forms
of motion encountered in this problem, and make a
detailed study of the most important class of satellite
trajectories. Working formulas suitable for the needs
of long-range prediction of the motion of artificial
satellites are given. A partial case of the three-
body problem, and also certain model problems of
celestial ballistics, are considered.

The qualitative properties of motion (stability,
periodicity and near-periodicity) are approached
mainly by the classical methods of H. Poincare and A.
M. Lyapunov, but also with the help of certain results
obtained by V. |. Arnol'd. The details of the appli-
cations of these methods are illustrated on the basis
of a number of specific examples selected from the
dynamics of space flight. The derivation of the
equations of motion, along with their transformation
and solution are also arrived at on the basis of the
methods of analytical dynamics.

The book includes the necessary information from
the theory of the Newtonian potential, analytical
dynamics, and the qualitative methods of celestial
mechanics. The book is intended for scientists,
engineers, and students concerned with celestial
ballistics and with celestial mechanics. There are
four tables, 21 illustrations, and a bibliography of
209 items.




Introduction /7%

This book is devoted to problems which lie on the boundary between two
sciences.-- classical celestial mechanics, and celestial ballistics, which is
still in its infancy. Although formed at the very heart of celestial
mechanics, the new science of celestial ballistics, owing to the peculiar
nature of the problems facing it, makes wide use of the methods employed in
various other branches of mechanics, in addition to those of the parent
science. The tasks of celestial ballistics have been strongly conditioned
by the adoption of the methods used in the theory of optimal processes and
also those of the theory of automatic control. 1In addition, the new
methods of computer mathematics, based as they are on the extensive
possibilities inherent in high-speed electronic computers, have had a very
powerful influence on the young science of celestial ballistics.

The use of electric computers, it is true, has played a vital role in
the successful lanuching of spaceships, as well as in adjusting their orbits.
It would, however, be erroneous to assume that the development of numerical
methods alone is all that is needed for the long-range advancement of
celestial ballistics. At the first stage of development of celestial
ballistics, it was necessary to conduct the 'planning' of orbits through
analysis of hundreds of trajectories obtained by numerical integration on
electronic computers. It was therefore entirely natural to untake the task
of developing a sufficiently simple approximation theory which would be at
once convenient and economical. Such a theory would make it possible without
resorting to cumbersome calculations, to arrive at the initial conditions
for the orbits of spaceships with pre-assigned properties. The formulation
of a precise analytical theory would make it possible, without recourse to /8
numerical integration, to achieve a long-range prediction of satellite
motion. Finally, such a theory is necessary in determining the parameters
of the gravitational fields of the earth, other planets, and the moon.

So-called qualitative methods are able to supply a good deal of infor-
mation regarding the dynamics of spacecraft. One may mention, in this
connection, the importance of these methods in determining the initial
conditions for periodic or near-periodic orbits, and for other satellite
motions which are stable in one sense or another. Finally, purely qualita-
tive study of the structure of the total integral of a non-integrable pro-
blem makes it possible to select the most suitable method of numerical
solution. Therefore, the most expedient objective is a rational combination
of numerical, analytical and claritative methods.

On the basis of these various considerations, the author of the present
volume has included a number of "model' problems of celestial mechanics which
in first approximation offer the possibility of a simple means of performing
the necessary calculations, and which serve as a basis for the construction
of precise theories of perturbed motion. The solution of these particular
problems has served as an education for both Soviet and foreign scientists.
It is of this that the accumulation of so-called model problems represents

* Numbers in the margin indicate pagination in the foreign text.
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one aspect of the development of celestial ballistics. In the language of
celestial mechanics, such problems are referred to as 'simplified", or
"unperturbed'", and the corresponding orbits are referred to as "inter-
mediate". We can justifiably say, therefore, that the main subject of the
present volume is the theory of the intermediate orbits of spaceships.

From among the many problems of celestial ballistics we select here
those which have to do with the study of a spaceship conceived as a material
point moving within a central gravitational field. It is natural that we
should include in this group of problems not only the motion of an artifi-
cial satellite within the gravitational field of a spheroidal planet, but
also the partial case of the circular three-body problem, the problem of the
motion of a spaceship in a Newtonian central field in the presence of light
pressure, and a number of others. Our tasks can rightly be called
a limited problem of celestial mechanics. Mathematically, it can be
formulated in the following system of differential equations:

x—2ny—nix = U,,

U+ 2n£¢—n25{'= uv,,
2= U:h

in which

U= 4 uR(x, g, 2,1, ),

where f isthe gravitational constant, m is the mass of the gravitating

body, r is the radius vector of the moving point, n is the angular

rotational velocity of the coordinate system, uR is the perturbation function,
and ¢ is a minor parameter.

Our principal attention will be directed toward the motion of an
artificial satellite within the gravitational field of a spheroidal planet.
Actually, the amount of research done on this particular problem is so
great that we cannot attempt, in a work of this limited scope, to present
even an outline of the main efforts which have been made. We therefore
limit ourselves to a particular problem, namely the generalized problem
of two immobile centers. It is this problem, which has attracted the
attention of so many specialists, that I regard as most rewarding in the
present line of endeavor. One may expect that it will assume in
celestial mechanics a position analogous to that of the two-body problem,
the circular three-body problem, etc. Apart from this, we give here certain
alternative variants for the formulation of a theory of satellite motion.
The author has attempted, so far as possible, to present a systematic
and complete statement of the results thus far obtained in this field, in
order to fill in the gaps existing in the published literature which stand
in the way of implementing a new theory.

The dimensions of the present volume, unfortunately, have not enabled me
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to include all of the available theoretical information, let alone all of the
practical material, relating to the Delavnay method. Being a technique common

to the theory of perturbations, the Delavnay method leads to a formal solution

in purely trigonometric form: in other words, at least on the practical

plane, it enables us to overcome the difficulty which is basic in all

celestial mechanics problems -- namely, the appearance of secular terms in

an approximate solution, which are the scourge of any formal-analytical

theory. In celestial ballistics the Delavnay method has been successfully

applied to the problem of the motion of artificial satellites by D. Brower /10
and Y. Kozai. -

The present author attributes great significance to the development of
qualitative methods in the analysis of the equations of celestial ballistics,
and in this connection has given here a brief description of two fundamental
methods -- namely, the method of the minor parameter of Poincaré, and the
second method of A. M. Lyapunov. The manner in which these methods are
applied in celestial ballistics is illustrated in a number of individual
problems. It has also been found useful to include discussions of the
stability and conditional periodicity of artificial satellites, on the basis
of results obtained by V. I. Arnol'd in his study of Hamiltonian systems.

The presentation of the theory of intermediate orbits, like that of
a number of the problems of qualitative analysis, is tied in with the use
of the apparatus of analytical mechanics. The author has therefore found
it useful to include in the present volume a special chapter on the subject
of analytical mechanics.

A good portion of the book is drawn from lectures given by the author
in previous years at the physical and mechanical-mathematical faculties of
the Moscow University, and also at the Faculty of Physico-Mathematical and
Natural Sciences of the P. Lumumba University of International Friendship.

The author feels obligated to express profound gratitude to the members
of the Department of Celestial Mechanics and Gravimetry of the Moscow State
University, and more particularly to Professor G. N. Duboshin and Professor
B. M. Shchigolev, for their helpful discussion on a number of the subjects
covered in this book. The author recalls with great satisfaction his
collaboration with Ye. A. Grebenikov and Ye. P. Aksenov on problems dealt
with here; he also expresses his sincere gratitude to D. Ye. Okhotsimskiy,
corresponding member of the USSR Academy of Sciences, and to Professor
V. V. Beletskiy for their concern and kindly advice, to A. L. Kunitsyn for
his extensive help and useful criticism and to G. T. Arazov for his
assistance in compiling the manuscript.

The author will be grateful for any additional remarks and advice.



CHAPTER |

NECESSARY INFORMATION FROM ANALYTICAL

§ 1. Lagrangian Equations

DYNAMI CS

Let us consider the motion of a mechanical system consisting of s
material points. We shall assume that on this system there have been
imposed p holomomic, ideal, bilaterial links. We shall use the symbols
My, My,enny Mo to denote the masses of the material points, and the symbols

Ty Tpseres T to denote their radius-vectors within a certain inertial

system of Cartesian coordinates. Finally, we shall use the symbol Fv to

denote the resultant of all the active forces applied to the v-th material

point.

In the case of natural dynamic systems, applied forces are described
with the help of a special function-potential, or force function. This
function is independent of time and of the coordinates of the points of
the system. A. Mayer [1-2] extended the concept of the potential to a
more general case in which the forces F in a rectangular system of Cartesian
coordinates x, y, z are defined by the follow1ng relationships

F, = grad,, vy, 2,) U— [grad

wvyvz)

Uy, (1.1)

where the function U depends not only upon time and upon the coordinates of
the material points but also upon the velocity components. It has been
agreed to call this function U as the Mayer potentiall.

This extention of the concept of the potential has been found convenient
in describing motion in the presence of gyroscopic forces. The Mayer potential
in particular is adaptable in the study of motion within noninertial systems
in which a Coriolis force of inertial arise. In celestial ballistics
the Mayer potential can be applied in the limited circular ‘three-boiled pro-
blem (for example, in the problem of reaching the Moon), in the problem of /12
the motion of a satellite in the gravitational field of a rotating planet,

etc.

Let us write the equations of motion, assuming, also, that in
addition to the forces described by equatlon {1.1), other forces @ without

a potential are applied to the points of the system:

writings of Helmholtz [3] and Hirsch [4].

1 The general conditions for the existence of a potential are given in the
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fnvi:v'::Fv"l"‘Dv’l'Rv (‘V=1,2,...,S), (1.2)

where R is the resultant of all passive forces which act upon the v-th
point.

Thus since we have assumed that the links are ideal, then for any
possible displacement the work of the forces of reaction are equal to zero:

M R,-8r, = 0. (1.3)

v=1

Let us transform equations (1.2) to the generalized (Lagrangian)
coordinates Q3> dps-++5 4 (n = 3s - p)defined by the following relationship

l‘v=rv(t1q1, q2,...,qn)- (1.4)

If within formula (1.3), in placeof Rv we substitute their expressions from

equation (1.2), then we arrive at this relationship:

s

Z(m;ﬂ"‘v—Fv_(Dv)‘arv=0- (1.5)

v=1

We then calculate the variations in radius-vectors T, with the help of the
formulas of transformation (1.4):

: ar,
oro = 2igo- 04, (1.6)

Substituting in equation (1.5) the values obtained for variations, and
changing the order of summation, we arrive at

noos o,
Z"{ (mvrv““Fv—‘(Dv)'E%;}aq‘r:O- (1.7)

fe=l tve=1

From equation (1.7), by reason of the independence of the variations of the /13
generalized coordinates, we can state that

S
. or, ar, ar‘,)
2 (mvr‘,- ~a—q—[———-Fv- '5[]‘;'_(1)\;' W

v=1

=0, (1.8)

where 1 = 1, 2,..., n.

Making use of the symbols used in equation (1.1), we can rewrite



equation (1.8) in the following form:
S
.. ar, d dr,

dr, ar,
- grad(xvv Yys Zy) U' bq—t - (I)“ ' .a_(]:

}=O(i=1,2,...,n).

(1.9)

Upon differentiating the transformation formulas (1.4), it is not difficult
to establish that the following identities will hold

or, or,

9, g,

v

Then, with the help of these identities the expression S r, - o can be

(1.10)

Z
transformed as follows: %
s §
. or " . or . -
4] v 11 d v or
Z,mr- =Z[—(mvr- — n,ry - ")Jz
v=1 v aqi v=1 dt ! aql ’ 6(][
d ° ar 1 9
\| v °2
= mvrv-—.—] —,—2——(mvr)=
dt [v=l aqi 2 v=1 6qi ’
_d[a(imv;‘%)] 9 (vai%)
d 9; NI, 2 99, 2
Denoting with the symbol T the kinetic energy of the system
1 s
v -
T=3 1m‘,r3, (1.11)
v=
in place of equation (1.10) we obtain
: 3
" ry d (T oT
nmyr, . = [ — —— 1. ].2
v§1 o 9q; dt (041) g, ( )
In analogous fashion we transform the second and the third terms of the
left-hand member of equation (1.9)
s
S [Or, 4 ar, }_i(ﬂﬂ)_i’f_,
Z{a,f?-d—t[gfada,.z;v.zvu 3, e a Up="ar \5 ) ™ a; (1.13)

v=1
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Finally, we introduce the quantities

Q:= 2([) aq

(1.14)

i

which in the science of mechanics are referred to as generalized forces.

If in equation (1.9) we make the appropriate substitutions from equations
(1.12) through (1.14), we arrive at the following:

d oT aUu oT aU .
4 (o , oU\ o 97 _ g, (i=1,2,...,n). 1.15
dt (aq,- + aq,-) o oy Y ( : (119

Introducing the Lagrangian function
L=T+U, (1.16)

we finally arrive at the following system of differential equations of motion:

d (oL oL _  —
E?(EE:)”'”'“"QI (i=1,2,...,n), (1.17)

which are referred to as Lagrangian equations of the second type.

If the motion takes place only under the influence of potential forces,
that is, if Qi =0(i=1, 2,..., n), then equation (1.17) will assume a

particularly simple form:

d (adl oL .
7&‘(3;;)"?WZ‘“0 (i=1,2,...,n). (1.18)

We should note that the kinetic energy T which enters into the Lagrangian
function will assume the following structure in the general case:

T=T, + T, +T (1.19)

2 1 0’

where T2, 1, T0 are the homogeneous forms with respect to the generalized

velocities q of the second, first and zero degrees, respectivelyl. /15
1 Textbooks on mechanics (for example, [5]), erroneously maintain that for
stationary links, T1 = T0 = 0. As a matter of fact, even with stationary

links the kinetic energy of the system T may contain the terms T1 and TO’

if the formulas of transformation to Lagrangian coordinates (1.4) reflect
the factor of time in an explicit manner.



Example: Let us consider the motion of a passively gravitating point
(that is, attracted but not attracting) of mass m within the Newtonian
gravitational field of an absolute solid body which is rotating with a
constant angular velocity n around a permanent axis. We shall assume that the
rectangular Cartesian coordinate system Oxyz is rigidly affixed to the solid
body. The origin of coordinates coincides With the center of mass 0 of the
body; the equatorial plane of the body is taken as the basic coordinate
plane, and the z-axis of the system lies along the body's axis of rotation,
in the direction of the mnorth pole (Figure 1)

The gravitational potential of the body
L4,2) with respect to the moving point will be
designated by U(x, y, z)}. Within the chosen
coordinate system, the moving point is under the
influence not only of Newtonian gravitation,

— but also Coriolis and centrifugal forces of
g inertia. The Coriolis force {2ny; - 2nx, 0}
- can be defined by the Mayer potential Uj:
z
Uy = n {xjj — y4), (1.20)

Figure 1.
and the potential of inertial centrifugal force
(nzx; nzy; 0) is defined by the formula
2
U2=£2-(x2+y2). (1.21)

The kinetic energy T, with respect to the mass of the point in its motion
within the chosen coordinate system, is

T = (8 4 29). (1.22)

Then the Lagrangian of the problem, in correspondence with (1.1) and
(1.16), is written in this form:

L =—§—(:‘ﬂ+éﬂ+z‘2)+ n (x5 — y9) + 5 (2 + 47 4+ U (%, 4. 2). (1.23)

From (1.18) and (1.23) we obtain the equations of motion of the problem:

- . d
x-—-2ny—n"x=(ﬁ-,

- . au
y+2nx—n’y=a—y , (1.24)

ou

z=25,.




In the restricted circular three-body problem, which formed the basis of
the study of the dynamics of flight to the Moon [6, 7], the equations of
motion assume an analogous form, as they also do in the problem of the motion
of distant artificial earth satellites, with allowance for lunar-solar

perturbations.

This classical problem consists in a study of the motion of a passively
gravitating point which is attracted to two other material points on the
basis of Newton's law of gravitation; here we shall consider those points
to be A (the Earth) and B (the Moon). It will be assumed, further, that the
Earth and the Moon are rotating around a common center of mass in Keplerian
orbits at a distance a from each other, the center of mass possessing a mean

motion n.

We shall consider a uniformly rotating rectangular coordinate system
whose basic plane coincides with the Earth-Moon orbital plane. The origin
of coordinates will be placed at the center of inertia of the Earth-Moon
system, and the x-axis will pass through A and B (Figure 2). The equations
of motion will be as in (1.24). The gravita-
tional potential U is then defined by the formula

m(z.4,2) frn fms

U= Vix— an)*~ o2 +z~ o+ Vix — az)®- "_1]3—+z-' ’ (1.25)
J 5/3,,”,0} o

] in which f is the gravitational constant, and m
4lay,0,0) 2

and m, are the masses of the moon and the earth,

respectively. Since the origin of coordinates is

Figure 2. placed at the center of inertia of the Earth-Moon
system, then the following equalities are justi-
fied for a; and a,:

wy

o
Z

s
ay= . 1
A s (1.26)
m;a
BT g o e

§ 2, Characteristic Functions in Dynamics /17

From equations (1.18) it is evident that in order to describe the motion
of a mechanical system in the case of potential forces, one need only con-
struct, in a particular manner, a certain function of generalized coordinates
and velocities -- namely the Lagrangian. Functions of this type, which may
be used for the description of motion, we shall refer to as 'characteristic
functlons”1 Another so-called characteristic function widely used in

1 The term ”characterlstlc motion'" is used here in a broader sense than the
one generally accepted (See for example, [8]).
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analytical dynamics is the Hamiltonian function, or Hamiltonian. Less
well-known characteristic functions are those of V. M. Tayevskiy [8, 9] and
K. M. Raitzin [10, 11]. Conversion from one of these functions to another
is achieved through transformation of the generalized coordinates or the
generalized velocities in new variables; here, all n generalized coordinates
(or velocities) are subjected to transformations. One natural exception to
this is the Routh transformation [12], which leads to a mixed Lagrangian-
Hamiltonian form of the equations of motion. If the generalized coordinates
and velocities are broken down into several groups, and each group is
subjected to transformation, we arrive at the most general form of the
characteristic function, and thereby at the most general form of the
equations of motion. This form has been pointed out in an article [13].

Let the motion of the mechanical system be defined by equations (1.18).
We can then transform tﬁe generalized cgordinates 97,12 Yz492 > 9y and
generalized velocities Ur1s Qyeps--» Gy to new variables S741° S74000 0 Sy
and Prs1? Prano-c s Pp by using the following formulas

=0 (i=l+1,...,n), p=2%

- (i=Fk+1,...,m), .
o %, (i -+ ) (2.1)

assuming that 0 < k < Z <m < n. 1If the Jacobian of the transformation is

not equal to zero,
09, """ 04, ag,., " 89, 0 (2.2)
DGy 9n Gpgrr -+ 2 m)

then equations (2.1) can be solved for the transforms of Lagrangian variables,
The quantities p; are referred to as '"generalized moments'; the quantities S5

which, by virtue of equation (1.18), coincide with the corresponding values of
p;, we shall refer to as "moments of the second order'.

From equation (2.1) it is evident that for this particular transformation
it is characteristic that the state of motion of this system, in the case of
one group of degrees of freedom, is determined by generalized coordinates and
velocities, in the case of the second group by generalized coordinates and
moments, and, in the case of the last group by generalized moments and their
derivatives.

Let us consider the function M*, which is defined by the following
relationship:

M.—_——L—I— 2 p‘q‘—" Z S,'q['. (2'3)

1=k+1 I=l+1i

11
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Solving equations (2.1) for the old variables, which is possible on the basis
of the condition of (2.2}, and substituting in (2.3) the appropriate values
of a3 and a with P; and Sy, We arrive at the following:

L]

My, ... 9,4, oD Prarr o9 P Spaqr ooy Sny Gy oen G) = Jorb oo Im2Phsts oo Py (2.4)

L41s +oos G7S{11s +oes Sp
The total variation of this function will be as follows:
ZaM 2 S oM
oM = —8q,+ 84, + 2 04, + 6p + oM o (2.5)
z % ' 1==§+1 6‘1 (=199, e t==hf1 ‘71’1 i %.1. s, ¢

On the other hand, varying the explicit expression for M, obtained from
equations (2.3) and (2.1), we arrive at the following:

6M=-—Z( o, + 2= 6q,) Z(p6q+q,6p)+~%r(séq+qéﬂ (2.6)

Comparing equations (2.5) and (2.6) and making allowance for the trans-
formation formula (2.1), in view of the arbitrariness of the variations which
enter into equations (2.5) and (2.6), we arrive at:

oM, _ M _Gi=b+tl,..
= aql(t._l 2,. l)’ap,- g, +1,...,m),
‘1‘?.=_?,_L(i=12 LB m41,. n),%ﬁ" q, (2.7)
0q; aq,

(i=1+1,...,n).

In this case the differential equations of motion will have the following form:

%(%’%)_%%= (i=1,2,...,k); 2.8
%(%‘s_”i_)_g_;”:=o (G=(+1,...,m); (2.9)
%_%,‘Z_‘?: S =R L), (2.10)
fzg%’ 1:%3’%‘- (i=m+1....,n). (2.11)
But since S; =Py then the subsystem (2.9) can be written as follows:
_j_(‘;g:) gx_o G=t+1,...,m), (2.12)

12
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while the subsystem (2.11) will have the following form:

(MY o d M\
PF?T(‘@)"’F dt(a,;,)(‘ m+ 1,...,n). (2.13)

Thus, the motion of the mechanical system will be described by the system /20
of equations (2.8), (2.10), (2.12) and (2.13).

If, within transformation (2.1), k = 0 and 7 = n, then the equations of
motion will assume a Hamiltonian form (2.10), and function M in this case will
be a characteristic Hamiltonian function, which has traditionally been
designated by the symbol H:

dq; 9H dp; aH

A T @ = e, (Sl (2.14)

the Hamiltonian H being defined by this formula:
H =—L '{" Zp[q[' (2' 15)
=1

If Z =m =n in the transformation (2.1), then the equations of motion
will consist only of the subsystems (2.8) and (2.10), and, consequently,
they will be of mixed- Lagrangian-Hamiltonian form:

d oM aM .
‘dT(a_(,'j)_"aE_o (i=1,2,...,k),

dg; oM dp;
dat — op; ' dt

. (2.16)
=_W (l=k+ 1,... ,n)-

The equations of motion (2.16) we shall refer to as the Routh equations.
Similarly, the characteristic function of equations (2.16) we shall refer to
as Routhian, which, according to (2.3), will have the following form:

nlk
M=—L+ 2 pf, (2.17)

i=k+1

where the transformed variables, with the help of the transformation formulas,
must be expressed in terms of new variables.

The Routh equations are found to be convenient in the study of the
rectilinear-rotational motion of artificial heavenly bodies. 1In this case,
in lieu of the canonical variables qs, P> which enter into the subsystem
of Hamiltonian equations, it is expeéient to adopt the osculating Keplerian
elements of the orbit of the center of masses of the spaceship, which vary
slowly with the respect to time. Similarly, in place of the generalized
coordinates for the subsystem of Lagrangian equations, it is expedient to

13



adopt Eulerian angles.

If Z = 0, m = n, then the equations of motion will have a Lagrangian
form; however the function will be expressed in terms of first-order and
second-order moments. This characteristic function was pointed out earlier
by V.M. Tatevskiy (8, 9]. The case m = 0 was also pointed out by V.M.
Tatevskiy [9] and subsequently studied in detail by K. M. Raitzin [10, 11].
New forms of the equations of dynamics can be obtained for still other
limitations of k, Z, m and n.

Here let us note still another partial case, which was obtained for
k =7 <m =mn. The equations of motion are then written in the following
form:

i(% oMy _
py) Py =0 (i=1,2,...,n), (2.18)

dt
where M1 =M, Py; = Ps-
We shall further assume that

wm . M (2.19)

pzl.:ap.u R p2[=('$; (i=1,2,...,n),

assuming that the Jacobian of the transformation (2.19) is not equal to zero.
The quantities P,; are referred to as '"moments of the third order". Then
assuming that:

A

. oM, . oM
2 § 55y, P T apy Pu) (2.20)

we arrive at the equations of motion in ‘the following form, following certain
simple transformations:

_d_(m oMy .
dt a,l'le. —apziZO (l=1,2,...,rz), (2.21)

where M2 denotes the result of substitution of Pys and pZi from formula (2.19),
in place of ﬁli and p,., in equation (2.20).
Transformations such as that appearing in (2.19) can be repeated a

number of times, provided each time that the corresponding Jacobians are
not equal to zero. As a result we obtain a Lagrangian system of equations:

d oM, aMs

in which by the symbol P.; we denote the moments of the s + 1-st order. These

14
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moments and their derivatives ési are defined with the help of the following
formulas:

M, . Mg,

et == . 2 . 23
Pt Opea, s’ P T 0P ¢ )
For the new Lagrangian we obtain:
n
M. =M — b0 . . . .
s { s=1 Z (ps[ps—l, £ + pstps—-l, t)}ps—l, i Ps—1, i=>Psir ps“- (2 . 24)

=1

The invariance of the Lagrangian form of equations, in the case of
transition to higher order moments, for the problem of small oscillations, pro-
vided that instead of generalized coordinates we make use of normal coordin-
ates, for in this case the higher order moments are proportional to the de-
rivatives (with respect to time) of the generalized coordinates of the same
order. In this respect, the Lagrangian form of equations in space moments
10f higker orders is a consequence of the variational nature of the:laws of
mechanics.

To the equation (2.22) corresponds the principle of least action in
the form:
t

(‘SSMS(pS[, po;)dt =0. (2.25)

o

§3. Differential Equations of Motion of Material Point in Curvilinear
Coordinates

We consider here the problem of the movement of a free material point with-
in a potential field of forces, and obtain the equations of motion in the form
which is most useful in celestial ballistics,on the basis of orthogonal curvi-
linear coordinates,

Let us assume that the rectangular Cartesian coordinates of points x, y, z
are expressed in terms of new mutually independent variables d1> 95> 43 with
the help of single-valued relationships:

x = x(q1, G2, Gs)
4=y (qlv q2, qs)v

2=z (91, G2, qs)- (3.1
Let us assume that the reverse transformation:
d1=q; (x1 Y, Z),

q2=q2(x, Y, Z), (3.2)

s = (s (x! Y, Z)

15



is also single-valued.

Such variables as qj, qp, qz form a system of curvilinear coordinates.

The particular forms of curvilinear coordinate systems are the cylindrical,
the spherical, the ellipsoidal, and the paraboloidal coordinates.

Having made some choice of a curvilinear coordinate system and considered
one of the equations of (3.2) q; = qi(x, y, z), we find that a definite sur-

face which is called a coordinate surface, corresponds to the equation
q; = const in space.

Each point in space is defined by the intersection of three coordinate
surfaces:

Q. =c. (i=1, 2, 3). (3.3)

The intersection of two coordinate surfaces determines a coordinate line. Along
a coordinate line any two curvilinear coordinates maintain constant values.

Through every point in space there pass three coordinate lines (Figure 3):
line q;, on which the coordinates d, and q, are

constant, line dys along which the coordinates ap and
q, are constant, and, finally, line 4> along which
the coordinates a3 and a, remain constant.
g canstz”
7, a The tangents to coordinate lines may be referred
to as "axes of curvilinear coordinates'. A system of
curvilinear coordinates will be orthogonal provided
that at any point in space the coordinate axes are
mutually perpendicular. It is not difficult to

establish that the condition of orthogonality of a
system of curvilinear coordinates can be described in the following form: /24

Figure 3.

dx d0x dy oy , 0z 0z

T o T T T

dx dx | Oy dy |, 0z 9z _

0q; 9qs dq3 093 9g2 0gs ~ 0, (3 ) 4)
dx Ox dy dy dz 0z -0

995 01 ' 993 0q1 ' 0qs 9qx

In compiling the Lagrangian equations it is first of all necessary to
express the kinetic energy of a material point in terms of generalized
velocities. For this purpose it is expedient to calculate the square of
the linear element ds. With the help of equation (3.1) we obtain the
following:
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ds® = H? dg®+ Hidqs + Hjdgs, (3.5)

where Hl’ H2 and H3 are the Lamé coefficients, defined by the following
formulas:

n=/ (@Y (@@ oo

With the help of equation (3.5) we come to the following expression for
the square of the velocity of the point:

v® = Hig2 + Higz + Hiql. (3.6")

Since in the case of the great majority of problems encountered in celestial
ballistics the force function is proportional to the mass of the moving

point, this mass does not appear in the Lagrangian equations of motion. There-
fore, by U and L we shall understand, respectively, the force function and

the Lagrangian, as reduced to the mass of the moving point.

Keeping in mind equation (3.6), we arrive at the following
expression for the Lagrangian:

1 . . .
L = (Hig? 4 Hagt + Hyg?) + U (41, G2 Gait). (3.7)

Cylindrical Coordinates. The rectangular coordinates are expressed in
terms of cylindrical coordinates by means of the following formulas:

X =pcosA, ]
Yy = psink, (3.8)
z2=2,
while for the reverse transformation we have
p = VRS + Y2 ’
A = arctan X (3.9)
X
zZ = Z.

For cylindrical coordinates (Figure 4) the coordinate surfaces consist of a
cylinder passing through the point in space under consideration (the axis of
this cylinder coincides with the z-axis), the half-plane X = const passing
through the given point M and through the z axis, and, finally the plane z =
= const, which is parallel to the basic coordinate plane. The coordinate
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lines consist of the straight line CM, along
which A and z are constant; the arc of the
circle BM, on which p and z are constant; and
the element of the cylinder MM', on which p and
A are constant. It is not difficult to verify,
in this case, that the conditions of (3.4) are
met, and that, consequently, the system of
coordinates is orthogonal.

With the helE of formulas (3.6) and (3.8) we
determine the Lame coefficients:

Figure 4
HP = 1,
Hz = 1.
Then, on the basis of equation (3.5) for a linear element we obtain the
following expression:
d32=dp2-f—p"‘d7»2+d22, (3.11)
while the Lagrangian (3.7) assumes the following form:
L= 3@ +pl )+ Up bz, 0. (3.12)
The equations of motion (1.18) in cylindrical coordinates are written in the /26
following form:
b—pir = U,
d |, .3 .
a7 (") = U, (3:13)
z2=U,.

Spherical Coordinates. The rectangular coordinates are expressed in
terms of spherical coordinates in the following manner:

X = rcos ¢ cos A,
Yy =rcosgsink,
2 =rsing.

(3.14)

The geometrical meaning of the spherical coordinates in this case is evident
(Figure 5). Here the angle ¢ is counted within the limits of -w/2 and

18



n/2; the angle A is counted within the limits of
0 and 2w; and r is considered to be invariable
from 0 to +e,

A geocentric system of coordinates is usually
employed in dealing with the motion of artificial
earth satellites. In such a system the origin is
at the center of inertia of the earth, and the
basic plane consists of the earth's equatorial
plane. In this case the coordinate ¢ becomes the
geographical latitude of the satellite. In

Figure &5 addition, if the system of coordinates is rigidly

bound with the earth, and if the x axis lies in
the plane of the Greenwich meridian, then the coordinate X becomes the
geographical longitude of the satellite. In an inertial coordinate system
whose x axis is directed toward the vernal equinox, A will be the right
ascension.

The formulas used for transforming rectangular coordinates into
spherical coordinates are as follows:
r=VYa+ P+,
8 Yy
A ==arctan =, (3.15)
w——mcmn———i——
Ve
In a spherical coordinate system the coordinate surfaces consists of the
following: the sphere r = const, the circular cone ¢ = const, and the half-
plane X = const. The coordinate lines consist of the straight line OM,
along which the coordinates ¢ and X are constant, the arc of meridian CM,
on which r and X are constant, and the arc of parallel BM, on which the
coordinates r and ¢ are constant.
From formulas (3.4) and (3.14) it follows that a system of spherical
coordinates is orthogonal.
Calculating the Lamé coefficients with the help of formulas (3.6) and
(3.14), we find that
H =1, H,=r, HA=rcosq>, (3.16)
for the square of the linear element we obtain the following expression:
ds® = dr? } r¥dg* - r? cos’p dA. (3.17)

The Lagrangian function will assume the following form:
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1 . . .
L=5(r*+rg’+ricos’e-A)+ U(r, g, A), (3.18)
from which, according to (1.18) we obtain the Lagrangian equations of motion:

r—rg*—rcostq-At = U,,
d ’ « ’
-7 (rEcos’@-A) = U, (3.19)
—;T(rqu) + r2A2sin@cos @ = U,
Ellipsoidal coordinates have been widely used in the problem of the

satellites of a spheroidal planet. Below we consider two types of
degenerate ellipsoidal coordinates.

Oblate Spheroidal Coordinates. These coordinates are associated with /28
recgangular coordinates by means of the following formulas }:

x =cchycosTcosh,
y =cchycosTsind, (3.20)
2z =cshysind,

where ¢ is a constant multiplier having the dimensionality of length. With
respect to P, ¢, XA we shall assume that they satisfy the following conditions:

0<<Y <+ oo, —;<ﬁ<;, 0 A< 2m. (3.21)

Under these conditions, to every point in space there corresponds a unique
combination of values of %, A,7J,

Combining equations (3.20), with ¢ = const, we discover that the point
must be located upon an ellipsoid of rotation:

x4y 22
c2ch? +cﬂsh?-1p =1 (3.22)

with major semiaxis ¢ ch ¥ and minor semiaxis c sh ¢. The ellipsoid of (3.22)
is an oblate ellipsoid of rotation whose axis of symmetry coincides with the
z axis.

For ¥= const, it follows from (3.20) that the point is found upon a
single-sheet hyperboloid of rotation:

lO0blate spheroidal coordinates are associated with cylindrical coordinates
by means of the following relationship: z + ip = ic ch (A - i¢).
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2 2
X4y z <=1 (3.23)

cFeos®®  cAsin®d

Finally, for X = const, the point lies on the plane
y - x tan A = 0. (3.24)

The surfaces of (3.22) - (3.24) are coordinate surfaces (Figure 6).

The coordinate lines in the spheroidal system
are as follows: the hyperbola MM', on which X and
0 are constant; the parallel of the spheroid AM,
for which the corresponding values of ¥ and 6 are
constant; and the elliptical arc of meridian of
the spheroid which passes through the point M,
From equations (3.4) and (3.20) it follows that /29
oblate spheroidal coordinates are orthogonal:
that is, the coordinate surfaces are an hyperbo-
loid, and ellipsoid, and a plane, which intersect
one another at right angles.

Such a coordinate system has been used in the
new theory of the motion of artificial earth

Figure 6 satellites [14].

The differentiating the transformation formula (3.20) with respect to
the spheroidal coordinates ¥, 9 and A, and substituting the values found in
formulas (3.6), we arrive at the Lamé coefficients:
Hy=Hg=c )Y ch*y—cos* ¥,
Hy =cch{cos . (3.25)

Substituting the values found for the Lame coefficients in formula (3.5), we
then arrive at the following value for the linear element ds:

ds* = ¢ (ch®) — cos*®) {dy? + d9?) 4- c*ch®yp COS2ﬂ°d7\«2. (3.26)

Making allowance for equations (3.7) and (3.26) we then have the following
value for the Lagrangian function:

L = S [J (§* + %) + chrpcos® 8- A+ U (4, 9, M), (3.27)
where J = chzw - cosza; which leads to the following system of differential

equations of motion:
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dﬂNH~SM¢W”WW—~mwm§ﬂM_~W,

(.m) + sin 28 - (\p2+ ﬁ*)-i— 2 ch?y sin 26- W’——U'm (3.28)

-—- (ch®*v cos? \‘}-3\.2) = UA.

Prolate Spheroudal Coord|nates. We now take up the second system of /30
degenerate ellipsoidal coordinates which is frequently used in the classical
problem of celestial mechanics of two immobile centers [15].

Prolate spheroidal coordinates u, v, w are associated with rectangular
coordinates by the following relationships:

X =cchvcosuy,
y=cshvsinusinw, (3.29)
z=cshusinucosw,

where c is a certain constant quantity having the dimensionality of length.
We shall assume that the spheroidal coordinates satisfy the following
conditions:

OSv<+oo, —F<u<y, 0w 2n. (3.30)

If the conditions of (3.30) are met, then for every point in space there
exists a unique combination of values of u, v, w.

To the system of prolate spheroidal coordinates correspond the following
coordinate surfaces: for v = const we have a prolate ellipsoid of rotation,

gy
wents T e = b (3.31)
whose axis of symmetry coincides with the x axis, while the foci are located
at the points (%c, 0, 0); for u = const which is cofocal with the two-cavity
hyperboloid of rotation

Y __ gk (3.32)

c?costu csin?y

and for w = const, we have the plane
y -z tanw = 0. (3.33)

The coordinate surfaces and lines are illustrated in Figure 7. The prolate /3
spheroidal coordinates are also orthogonal.

From simple calculations we obtain the following values of the Lamé
coefficients:

H,=H,=c)ch*>v—cos?y, (3.34)
= cshusinu.
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Figure 7
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Then we obtain the following expression for the
linear element:

ds® = c*[J (du® + dv®) + sh?v sin® u-dw?], (3.35)

while the Lagrangian function assumes the follow-
ing form:

L =—C,;~[J(it2—l— 0%) + sh?usin?u-w? + U (u, v, w, 1), (3.36)
where the following designation is used

J = ch?v — cos?u. (3.37)

The equations of motion of a point in prolate spheroidal coordinates are

described as follows:

d . . . . .
a7 Ju)—sinu-cosu(u? - v* -+ w?sh?v) =

1 ’
TUIU

c

5%(J5)-shv-chv(d24-62+—ézﬁn”u)::7%-0;, (3.38)

d . . 1 ,
27 (sh?vsin®u-w) = — Vo.

Paraboloidal Coordinates. In dealing with the problem of the motion of
a spaceship within a central Newtonian field of force, and with constant
vector of reaction acceleration [16] and [17, 18], and also in studying the
problem of the motion of artificial earth satellites with allowance for
light pressure, the scientists make use of paraboloidal coordinates. Such
coordinates are associated with rectangular coordinates by the following

relationships:

X = —é—(gz—’ﬂz)»

y=Encosy, (3.39)
z = Ensing.

2 2

From the last two equations (3.39) we find y2 + 22 = £ " . Combining

this with x2, we have

xz_'_yz_'_zz:_[i;_(gz_i_nn)z,

from which £ = const we obtain the following equation of the coordinate

surface:
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p 2=l (3.40)

Equation (3.40) defines the paraboloid of rotation with focus at the
origin of coordinates and with axis coinciding with the negative portion of
the x axis.

In analogous fashion we find the second coordinate surface:
y* -+ 2 =7+ 20, (3.41)

which also is a paraboloid with focus at the origin of coordinates and with
axis lying along the x axis.

The third coordinate surface is the plane which passes through the x
axis:

z -y tan ¢ = 0. (3.42)

The coordinate lines are as follows:

line £ is the parabola

¥* = n* cos? ¢ + 2u%x cos? g,
Z = ytang,

line n is the parabola

¥* = & cos? ¢ — 2n%x cos? g,
2 = Y tanp,
line ¢ is the circle
P 2=E, x= _;_(gz_nz)_
The relative positions of the coordinate planes and lines are shown in Figure
8. The paraboloidal coordinates are orthogonal, as is evident from equations
(3.4) and (3.39).

Formulas (3.6) and (3.39) lead to the following expressions for the Lame /33
coefficients:

HE=H11=‘/ §2+Tl21 H¢=§"l (3.43)
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Then the square of the linear element is
determined from the formula:

ds® = (82 + n?) (d§* + dvn’®) + En de?, (3.44)

and the Lagrangian will be:

8y

L =.%_ [(82 + 0%) (B* + %) + Ene®l + U &, m, @, £).(3.45)

The Lagrangian equation of motion in para-
boloidal coordinates will be written as
follows:

d . . . . ,
Figure 8 =7 LB+ ) El—[E(E* 4 n%) + no?] = Uy,
d . . . . ,
a7 B+ %) 0] — [ (8 + n2) + E¢?] = U, (3.46)
d . .
d—,(§ﬂ¢) = U,.

NOTE: If both foci are removed to infinity, then the ellipsoidal
coordinates degenerate into rectangular coordinates; if only one focus is
removed to infinity the ellipsoidal coordinates become paraboloidal; and,
finally, when the two foci coincide, the ellipsoidal coordinates degenerate
into spherical coordinates.

§ 4. Canonical Transformations. Jacobi's Theorem.

According to the results of § 2 the motion of a dynamic system can be
formulated in a system of equations similar to the Routh equations:

dp; oH d9;  9H .

77:—@' G =, (=12,...,kn), (4.1)
d (ol oH .
—_— .—.——-—:0 :‘:k' l,...,n: (4'2)
- (aq;) %, (j=k+ )

in this system of equations the characteristic function H, which is defined
By formula (2.17), will in the general sense, be independent of the quantities
t, Qqovevs Qs Pysevrs Pps Apyqoe--s Ap- The variables Py and a3 of the sub-

system of equations (4.1) we shall refer to as 'conjugate canonical variables"
(qi is the generalized coordinate, P; is the generalized moment).

Let us examine those transformations of the canonical variables a3 and Py
which do not disturb the Routhian form of equations (4.1) and (4.2). These
transformations we shall refer to as ''canonical''.

Tranformation of the old variables a3 and P; to the new variables g5 and

n, we shall define with the function
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|4 (t’ T1s---» qk»' .glv--', gk):

this will be referred to as the ''generating function'". The transformation

formulas will have the form

oV . av .
('p‘."—‘?"z’—'-, n‘=_—021‘ (l=1, 2,,-..,k)l,

.

where ¢ is a constant (the valency of the transformation).

From equations (4.1) and (4.3) it follows that:

o _ - Op aq;
an, '.Zl ((I, an;,  Tidy, ) !
apl 1 A 2V aqs

and
oV oV oV )
Cp dq, 0t + Z (aqs dg ql 0q 0%, g/ ’
therefore,
OH 1 9q, [aqs 2% ]
n, c El on; Lo + 2 09, 0%, g1
Taking into consideration the fact that
v 9q, { 0 if i 7£ j;
=, 99,08 o, |—143if i = J
. 9H 4 8 (v, 1 C 8 T avy
we find that T, = e o, (at )—l— —&» or & =.5m, (CH,+_5.[_)_
SN ov
be shown that =g (CH+_¢7T)'
Let us assume that
_ av
K =cH ‘l— 7{" .

Since
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Since 9K Cﬂ oK =c aH..,
aq,

aq, ag, ' 94,

then, instead of the system (4.1) - (4.2), we finally have the following:

: aK oK P

b= W= E=LZ%.h) (4.5)
d oK K :

—_— | —-————~=0 =k l,...,n).

dt (aq,) 0q; U + (4.6)

The transformation (4.3) is possible only when the Jacobian

9V
det ( aqzaal)

is not equal to zero.
We are now able to formulate a theorem.

Theorem. If the canonical variables q; and p, are transformed into new
variables gi and n s with the aid of the generating function V (t, dys Agseevs
Qs Ey» 52,..., gk), then the differeintial equations for the new variables
will be of Routhian form, and the new characteristic Routh function will re-
semble (4.4).

From this theorem we can derive a theorem for the transformation of
Hamiltonian systems for the case k = n.

Using similar arguments, we can show the correctness of the following
theorem.

Theorem. Let the variables qa; and Py be transformed into new variables

with the help of the formulas:

oV av

._6‘q—[——_—_-(,‘p[ (l:::-l,2,...,[), a—m-=*“cql-(]'=l+1....,lz), (4 7)
v Vo - :
—6—5—:2——1'],- (l’=1,2,...,m), . ~—§s (S rn+l,...,k),

in which the generating function V assumes the form:

V (tr qlv Gaseees 41, Pl+1,---, Pk, gh"-» Emy Nm+1reves T]k);

then the Routhian equations of motion (4.1) - (4.2) preserve their form
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dg, 8K an, oK E=12,...,%),

ar T ow,  Tdf T T Eg

d [ 9K oK . (4.8)
L (o) 9% _ =k+1,...,0),

- (aq!_) %; (j="k+ n)

while the new characteristic Routh function K is defined by
_ EY%
K—CH'Fa—t- (4.9)

From these two systems we can deduce the following corollaries relating
to the pure Hamiltonian systems of (2.14):

dq, oH dp, oH ,

Z = @t = o E=L2...n) (4.10)
Transformations which do not disturb the Hamiltonian form of equations are /37
referred to as "canonical' or '"'contact'. Univalent canonical transformations

(¢ = 1) are the ones most frequently employed.

If equations (4.10) are subjected to the canonical transformation

oV 2% .
p‘r:a;‘v 7][=_a—ai' (i=1,2,...,n), . (4.11)
where V = V (t, Ays-+-s Gy El,..., En), then we arrive at a new system of

Hamiltonian equations

€, 8K a; 9K .
= @ e (E=L2...n (4.12)
with the Hamiltonian
. oV
K=H+ 5. (4.13)

The theorem on canonical transformations suggests a means of integrating
the equations of motion, and leads directly to the well-~known Hamilton-
Jacopi law.

Let us consider the Hamiltonian system of (4.10) and attempt to find
such a canonical transformation which will result in the Hamiltonian equations
in the following form:

g,
7,

d'l]l

=0, =0 (i=1,2...,n), (4.14)
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- that is, that the new characteristic function K will be identically equal to
Zero:

oV
K=H+ 5 =0 (4.15)

If we are able to find such a transformation, then the new system of equations
arrived at (4.14) can be integrated directly, and its common integral will be
written as follows:

gl = ay, nm = —ﬁi (i = 1) 2,---.’1), (4.16)

where oy and Bi are arbitrary constants.

The generating function of the transformation must satisfy equation (4.15),/38
which, on the basis of equation (4.11), can be written as follows:

av av v
a—t-f“H(t,QD--on-gle,---,g‘;:)=0- (4.17)

The equation thus obtained is called the Hamiltonian-Jacobi equation! .

If the generating function V, which satisfies equation (4.17), contains
n arbitrary constants, and the condition

o
det(aqiaa,.>:?‘=0’ (4.18)

is met, then the function V will be the total integral of equation (4.17):
By knowing the total integral of equation (4.17), it is then easy to obtain
the total integral of the Hamiltonian equations of (4.10), by using formulas

(4.16).

We thus come to still another theorem.

The Jacobi Theorem. Let the system of canonical Hamiltonian equations
of (4.10) be given, and let V (t, Qpsecvs Gps Opseees an) be the total

integral of the Hamilton-Jacobi equation (4.17); then, the total integral of
system (4.10) can be represented as follows:

av ov . :
pt=7’7l'. Bl=—a€[‘ (t=1,2,...,n), (4°19)

1 is equation is also called the Hamilton-Ostrogradskiy equation.
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where ay and Bi are arbitrary constants.

Corollary. If the mechanical system is conservative -- that is, if
%%-5 0 -- then the total integral of the HamiltonzJacobi equation can be

represented as follows:
V= —ait+ W (g, Gor-ss Gn)s (4.20)

where the constant o5 in the case of scleronomous constraints and scleronomous

transformation to generalized coordinates, denotes the total mechanical energy,
while the function W satisfies the equation:

ow oW aw —a
H(thlz,---,qﬂ,'%'l‘, ?E‘,---:aqn = “1- (4.21)

The Hamilton-Jacobi equation can be written in a somewhat different form
if the system (4.10) is transformed beforehand, as follows:

& =4, p,=n, (i=12,...,m),
. 4.22
El‘:pp Tl,-=—q1 (1=m+l""1n)! ( )
this transformation is canonical, and leads to a system of Hamiltonian
equations:
B _oH  dn o
dt Gn[’ ’d_t——_FEl— (121)21-..,n) (4.23)
with the characteristic function:
H=H (t» g]v'-'r gmv_ Tim+v--TMas Mseeoy Mo §m+1,...,§n) (4_24)
Then, instead of equation (4.17), we have
av av av gV av
T’*‘H(tyqu---,qmp_m,...,——an——,-a—ql—,...,'aq—m‘,pmu,...,pn)zo. (4,25)

In addition to the total integral of the Hamilton-Jacobi equation, the
various partial integrals of this equation may also be useful. This problem
has been studied by Lehmann-Filhes-~, whose results are stated below.

3

3 . : , R
See Lehmann Filhes, Astr. Nachr., Bd. 165, 1904.
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If a partial integral of the Hamilton-Jacobi equation has been found,
VvV (t, Qysevrs Qs Opseces ak), which depends upon k < n arbitrary constants

oy then it is possible to find 2k first integrals for the equations of motion

7)% v .
=B G=p (=128 (4.26)

§ 5. Integration of the Hamilton-Jacobi Equation by the Separation of
Variables

The use of the method of separation of variables to integrate differential
equations with partial derivatives of the second degree has been studied by
V. G. Imshenetskiy [19]. However in the science of mechanics we are more
interested in those cases of integrability of the Hamilton-Jacobi equation
in which the metric of the space of generalized coordinates is delineated.
Such cases of integrability have been studied by numerous writers (J. Liouville
[20], P. Stackel [21], Morrera [22], Dall'Aqua [23], G. Pirro [24], Painleve
[25], N. D. Moiseyev [26],etc.). Below we give two cases which generalize
the results of [21] and [26] (See [27]). Here it should be noted that, as
far as celestial mechanics and celestial ballistics are concerned, the cases
dealt with by Liouviﬁle and Stackel, along with their generalizations, are
the most useful ones”. The use of these theorems offers the possibility of
a simpler and a more complete study of the nature of motion (See, for example,

[281).

Let us examine, now, a certain class of dynamic systems for which it is
possible to demonstrate the existence of a partial integral of the Hamilton-
Jacobi equation.

Theorem. If the kinetic energy of system T and its potential U are
defined by the formulas

k
T="‘§“bza;(q;)é?+T.(dh+lv---,q,,,qkﬂ,---,q,,) (5'1)
=1
0 k
U=a3 AU q)+U Ggp--9) k<n, (5.2)
=1 .
in which
k
b= 1b
zZ"l :(4,), (5.3)

where a., bi’ Ui’ T*, U* are arbitrary functions of their arguments, then the

Hamilton-Jacobi equation admits of the following integral:

1 See Yarov-Yarovoy, M. S. [29].
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k
V=—nt+ 2" V3 (U, —kb; F ap) dgs+V*, (5.4)

/=1

where h and a, are arbitrary constants.

Proof. In accordance with equation (2.1), we introduce the canonical
moments:

OT_

p,= 3,

then, for the Hamiltonian function we will have

2
2 "EI— T2 (pk+1t e oy Pny qk+1r o0y Qn)'—

T (Ghets « + o0 ) — o 2 Us(@) — U’ (@esss - - -1 Gn)-

i=1

According to equation (4.21), the Hamilton-Jacobi equation is written in the
form

& n
» [2.2‘_(%)2—%—}—%;] +0(Ts—To—U"Y+h 2 b;(q)=0. (5.5)

i=ki1

We shall search for the integral of equation (5.5) in the form:

k
V= Vi(@)+ V' @esr - - -1 Gn)- 5.6)

i=1

From equation (5.5) it is evident that the functions Vi must satisfy the
equations

av,
(dq ) = 2a;,(U;— hb; + o),

(5.7)
where a, are arbitrary constants.
From this we find that
Vita) =\ V2 Ur—Rb T addg,  (i=1,2,..., k). 5.8

Substituting in equatlon (5.6) the expressions for functions V obtained in
equation (5.8) we arrive at

V=

I~

SVQa,-(U,-—hb,-—]— %) dg; 4+ V°, (5.9)
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where the function V* must satisfy the equation

«f oV oV’ . . n k
Az(m’-~-170;'qk+1y--'vqn)—T0_U + A 2 bi(qi)+206;=0. (5.10)

=kt =1

From equations (4.26) and (5.9) it follows that the dynamic system under
consideration admits of an integral of the Hamilton-Jacobi equation (5.4)
containing k + 1 arbitrary constants.

Remark. Using the integral (5.4), it will be possible, on the basis of
equation (4.26), to find k + 1 first integrals.

Corollary. If the kinetic energy and the potential are defined by the
formulas

1, ~ .

T=—45b2ald, (5.11)
=1

1 n

U=+ 2 Uias),
=1 (5.12)
in which
b= Zbl(‘h),

f=1

then the Hamilton-Jacobi equation will admit of the total integral

V=—ht+ ZSVQa[(U,—hbi+oc,)dqi, (5.13)

=1

where the arbitrary constants a, are associated by the relationship

n
E 0°1=-‘0- (5.14)
i’
This, in effect, is the Liouville theorem. Dynamic systems from which /43

the conditions of equations (5.11) and (5.12) are met, are referred to as
"Liouville systems'. A study of Liouville systems may be found in an
article by V.I. Arnol'd [30] (see also [31]).

The following theorem is a generalization of the work done by Stackel and
N.D. Moiseyev (see [27]).

Theorem. Let there be n2 arbitrary functions ¢ij (qi)(i, j=1, 2,..., n)

which satisfy the condition
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P11 Por - P
A— Piz Po2 °** Pno =0, (5.15)

and n + 1 arbitrary functions @(ql, Qyse+es qn) and Ui (qi) i=1, 2,..., n).

Then, if the kinetic emergy T and the force function U are defined by the
formulas

1 ﬁ\ a; . oD -
T=— 2 (5q +25— +A,.b),
z A\ 9 25, 9 ‘ (5.16)
N\
U= 2 AU, (5.17)

1 08A
Aj=5—5— ici
where A: =7 3%, and each of the coefficients a; and bi depends only upon the
corresponding variable s then the Hamilton-Jacobi equation has a total
integral

Ved+ D g‘/;(bi + 2U; + 20091 + 2 di‘Pt/) dg;. (5.18)
=1 i=2

Proof. Inserting the moments P with the help of equation (2.1),

we arrive at the following expression for the Hamiltonian H:

1w [A o0 \?
H=.f[=1 [a_’ (p _a—qi) —A,-b,]—U. (5.19)
Then, according to equation (4.21), the Hamilton-Jacobi equation can be /44

written in the following form

n 2
1 (v o0 1 _
ZAI[E(T%‘—E?{) —be—uf]—“l- (5.20)

i=1

Making use of the identity

n
Z (PIIAL‘ =]

=1

instead of equation (5.20), we have
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n

1t (v oo\
§1A,[—EI—(a—q[——'b—q—l—) ——b,-~—20£15P51—2U,-J = 0. (5'21)

Equation (5.21) is satisfied if we stipulate that

Z °‘1(le> (5.22)

=2

av
B0, o, aq‘ +‘/az b + 2U; + 20,94 +

where a, are arbitrary constants.

Actually, substituting in equation (5.21) the values of %%—- from
i

equation (5.22), we see that equation (5.21) is satisfied identically,

n n
2 At /_J AjPip = L4 2 oA i = E oy 2 Pt Fo— a(p =
i=1 =2 —g i=1 j=2 i=1 i

since for j = 2, 3,..., n each of the quantities

representing the sum of the products of the elements of the j-th line of the
determinant by the cofactors of the elements of the first line, becomes zero.
The condition of equation (4.18) is also satisfied.

Proceeding from the reasoning of Darboux [32] regarding the integration
of the equations of motion of a dynamic system whose kinetic energy is a
homogeneous function of generalized velocities, we can delineate still another /45
case of integrability.

Theorem. Let there be n(n + 2) continuous functions, each of which
depends solely upon a single variable, namely

Pij (qf) (iv j—_‘— 11 2)'--1 n)’
Ui (qi)’ a; (qt) (L = 1’ 2:‘“) fl),

and let there be a differentiable function @(ql,..., qn). We shall assume
that

A = det|q;(q:) [5£0.
If, now, the kinetic energy T and the potential U are defined by the formulas
1t wfa z
T=g 3|5 D av, 42225,
2 2) a; 91 ,=21 i 1+2an q: (5.23)
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ZAIUI (5.24)
=1
in which
aA e
A"='06,-T (i=1,2,...,n), (5.25)

then for the corresponding Hamilton-Jacobi equation the total integral will be:

n n
V=04 S‘/a, (2an1 + 205+ X a/(pu-) dq;. (5.26)
i=1 j=2
Proof. The Hamilton-Jacobi equation is written as follows
- o Afow a0\ )
N ) A}
n ~ g, \'9 oq ) b
E AIU] =1 i ql i (5 . 27)

/=1

where oy is the constant of integration.

Equation (5.27) can be written as follows

n 2
kS 1 oV ad
s A,[___ (W_a_q[) —2(p,-1—-—2a1U[] —0. (5.28)

a
i=1 4

As can readily be verified, (5.26) really represents the total integral of the
Hamilton-Jacobi equation (5.27).

§ 6. Integration of the Hamilton-Jacobi Equations in Spherical Coordinates

Integrating equations of motion by the Jacobi method depends to a great
degree not only upon the structure of the potential, but also upon the space
metric of the generalized coordinates. For example, the Liouville theorem,
given in § 5, in the case of three degrees of freedom enables us to find the
total integral of the Hamilton-Jacobi equation only with the use of isometric
coordinates -- in particular, ellipsoidal coordinates.

Let us examine the motion of a point in a spherical system of coordinates
within a force field with potential U (r, ¢, A). From equation (3.18) we find
expression for the moments

pr =1, Po=r%¢, pr=rihcos’q.

The Hamiltonian is written as follows:
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1 1
H='2—(§+—r’—'p‘2"+ r"cos2 p,‘)—-U(r,(p,?v) (6.1)

According to equation (4.21), integration of the equations of motion (3.19)
is reduced to the problem of finding the total integral of the Hamilton-Jacobi
‘equation

() A (2 ety () 20,0 ) = 2 6.2

According to the first theorem of § 5, equation (6.2) has a partial
integral, provided

Ulr, @, M= £(r) 4+ 2@H, (6.3)

where f and ¢ are arbitrary functions of their arguments. Substituting in /47

(6.2) the expressions for U from (6.3), we obtain this Hamilton-Jacobi equation:

VN2 1 oV 2 1 _ 20@.8 o  _ (6.4)
(0!’) +F’(?(P—) +—“—_r2cos?q)(al,) Qf(f) r2 2“1—0.
Assuming
V r, ,A. :V
(r,o ) 1(r)+V2(q),7\,) (6.5)
and substituting this value in equation (6.4), we arrive at
dVir\ 2 4 Va2 1 0Va\2 D
(—271-) -—-2f(f)"‘20‘1+72—[(—(ﬁ,—) -+ cosgq)( ) F20 (9, A)] (6.6)
We require that the function V2 (¢, A) satisfy the equation
V2 \2 1 aV,
(5 + e (32 + 200 = .
in which a, is an arbitrary constant.
The function Vl(r) is determined from the equation
(‘”’1) —2f(r) + 22— 2a, = 0. (6.8)
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Separating the variables in this equation, and integrating, we arrive at the
following integral:

o=V 0 S 3

On the basis of (4.19), we find the first integral of the equations of
motion of (3.19), using this relationship:

——at+ |V U0+ 2m—dr. (6.10)

According to equation (4.26) we have

dr

&l ———=1+4ps
'I/Zf(r)+2al——°r% (6.11)

This integral enables us to study the planetocentric distance of a
fairly remote satellite, in the case in which we may neglect the term with
the spherical harmonic when analyzing the gravitational potential of the
planet.

Remark. It is interesting to observe that for a field of forces of type
(6.3), there is an analog to the Binet formula. Actually, if the potential
of the field is defined by formula (6.3), then equations (3.19) assume the
following form:

- . . ’ D
r—r(Q*+ Acos’@)=f — 2_%&'
d . . o
=7 (r*A cos? @) = —5-, 4 (6.12)
d .. . @,
25 (@) + r*A? sin @ cos =7

In place of time t and radius-vector r, let us introduce the independent
variable T and the reciprocal of the distance u:

2

u=-i—, dv="—d, (6.13)

where ¢ is an arbitrary constant.

Then, system (6.12) assumes the following form
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c ., 3
W+ (1 cost @ ) = — 37 [+ 200,

i O cos @) =0, (6.14)
@”-}- A" sin @ cos (pzc"’@;,,

where the prime sign denotes differentiation with respect to =.

Multiplying the latter two equations by A' and ¢', respectively, and
integrating, we find the first integral:

AM2cost ¢+ @2 =262 (@ + ¢y), (6.15)

where Sy is the constant of integration.

With the help of equation (6.15), the first of the equations of (6.14) is
transformed as follows:

. = ..

u” -+ 2cc%u fu (6.16)
If in the potential (6.3) there is no second member (& = 0), then for ¢ = 0,
assuming that ¢y is equal to the area constants, we arrive at the Binet
formula. Here “the new independent variable is the longitude i.

Formula (6.16) can be used in studying the motion of artificial earth /49

satellites in a central gravitational field if we take advantage of the ideas
of B. Garfinkel [33]. Equation (6.16), and also the Clairaut-Laplace equation
[34], as well as the equations of A. I. Lur'ye [35] are quite convenient in

the study of satellite motion provided the averaging method is used [36].

If the potential has the form
Ulr, @)= Fr)+ 22, (6.17)

then the problem is reduced to one of quadrature.

Actually, since equation (6.7) does not contain an explicit factor of
longitude A, we can stipulate that

Ve = agh + V; (9). (6.18)

The substitution of (6.18) in equation (6.7) results in

2
V23 _ 4 90 (p)— g =0. (6.19)

cos? @
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From the latter, with the help of quadratures, we arrive at

2

V2(¢>=V]/a2—2® (@ — g 49- (6.20)

Making due allowance for (6.5), (6.9) and (6.20), we obtain the total integral
of the Hamilton-Jacobi equation

V"-—-"—‘alt“][—g 1/2f(r)—‘%‘+2d,1dr+

44“+H/%*MW”cme

(6.21)

We have used the given problem as an illustration of the results obtained
by R. Barrer [37] and B. Garfinkel [33] in connection with the motion of
artificial earth satellites.

§ 7. Motion Within a Central Field of Forces. The Two-Body Problem.

In celestial ballistics, in connection with the motion of a material
point in a central field of forces, we are concerned not only with the two-
body problem, but with the ana1y51s of the motion of an artificial satellite
of a spheriodal planet within the equatorial plane of the planet.

Therefore, let us examine the general problem of the motion of a material /50
point in a central field of forces.

On the basis of equation (6.1), the Hamiltonian of the problem is:

1 . P
He (o 5t i) -V 0 (7.1)
The differential Hamiltonian-Jacobi equation
v oV \?2 1 9V \2 1 gV \2
a t (o) 7 (55) Ty (@) —W =2 (7.2)

is integrated by the separation of variables (see § 5).

If we designate
V=V, (n+V.) + Vs (M) — oy, (7.3)

then equation (7.2) breaks down into three differential equations:

2
V;m+iri___2U(r)__.2al=0, (7.4)
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V2 + == a§=0, (7.5)

cos’*

Vs— o =0, (7.6)

in which @, are arbitrary constants. These constants have a simple mechanical
interpretation. The constant ay is the total mechanical energy; o, is the
area constant which characterizes the amount of motion with respect to the
z axis; and dy is the module of the kinetic moment with respect to the center

of forces,

Integrating (7.4) - (7.6), and substituting the values of the function
Vi that is found in formula (7.3), we obtain the following for the total

integral of the Hamilton-Jacobi equation (7.2):

r i} 2 @ uz ]
V=§1/ % pomdrt |V d— o do ok —at, (7.7)
. 0

Fo

1
where rO is a constant which will be selected later on .

From (7.7), on the basis of Jacobi's theorem (see § 4), we find the first
integrals of the problem:

d d
S 4 = =1+ By, (7.8)
rol/2u(r)_i+2al

r P
' dr
T o
r? 20U (r) — —, + 2
(7.9

4
x—%g =B (7.10)
ocoszq,l/a2___3

2 cos? @

Since the vector of the kinetic moment, on the basis of equations (7.5)
and (7.6), maintains a constant direction, then the orbit of the point will be
a plane curve, and the normal to the orb1ta1 plane will be co-linear with the
vector of kinetic moment. It follows from equation (7.5) that motion is poss-
ible upon condition

In formula (7. 7) we take deflnlte integrals so that there will be no
unnecessary constants introduced into the expression for the total
integral.
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a3 —azsec?@ >0,
which can be written as follows

[o X
lcos@|>| 5| (7.11)

If we use the symbol i to denote the inclination of the orbital plane to the
basic coordinate plane, then, on the basis of equation (7.11), we have

+ _ Og
Cosi=_—=. (7.12)

According to equations (7.11) and (7.12), the spherical coordinate ¢ varies
within the following limits

-i < ¢.< + i,

The motion of a point is conveniently represented on a spherical surface /52
(Figure 9) whose center lies at the center of forces. In our study of motion
we shall make use of the following concepts. The
line which marks the interception of the orbit
with the basic coordinate plane we shall call the
line of nodes. The points of intersection of
this line with the celestial sphere we shall refer
to the ascending and the descending nodes of the
orbit; here the ascending node is the one such
that, with transition through it, the point falls
in the Northern Hemisphere (in Figure 9 the
ascending angle is denoted by the symbol £ , and
the descending angle by the symbol ¥ ). The
position of the ascending node we shall define as
Figure 9 the arc which is reckoned in the positive direction

from the x axis on the basic coordinate plane. This
arc we shall refer to as the ''longitude of the
ascending node'.

We shall begin by studying the general properties of motion making use
of the integral of (7.8). We shall limit ourselves to the case in which the
equation

2
o3

QU(I‘)— —|—20C1=0 (7‘13)

r?
has two different positive roots

0<r <7
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Here, of course it is assumed that between roots r_ and T, there are no other

roots of equation (7.13). As is evident from (7.8), the radius-vector r
always lies between the limits

r <r<r7T

P (7.14)

a’
if it satisfies the above mentioned inequalities at the initial moment. Then
rp will be the least (pericentric) value of r, and T, the greatest
(apocentric) value of r. In place of r_and T, We can introduce the

constants a and e, with the help of the following relations: /53
rp=a(l —e), re =af(l +e). (7.15)

The constant a we shall refer to as the 'mean distance', the quantity e will
be called the '"measure of oblateness of the orbit" (quasi-eccentricity).

Let us assume that in the total integral (7.7), as well as in integrals
(7.8) and (7.9), the lower limit of integration in the first term is rp. Then

(7.8) becomes

i’ dr
. S—— ,
S Vi—r)(ra—n00 +h (7.16)

"p
where ¢@(r) is defined by the equation
(12
D(rY(r—rp)(ra—1r)=2U(r)— r—: +- 224,

while, obviously ¢(r) > 0 for all values of T which satisfy the conditions
of (7.14).

In (7.16) we substitute
B, = -T. (7.17)
If t = T, the equality r = rp,is fulfilled: i.e., at moment T the moving point

is at a minimal distance from the center of forces (at the pericenter). The
quantity T we shall refer to as the moment of passage through the pericenter.

Replacing the variable in the integral (7.16)

r=a(l —ecosE), (7.18)
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we arrive at

E

¢ dE
={—T,
OSV(D[a(i-—ecosE)] (7.19)

from which it is evident that E is a regulating variable. Equation (7.19) can
be referred to as the equation of time (in the two-body problem it is referred
to as the Kepler equation).

If e = 0, then ¢(r) = ¢(a) and E = vo (a) (t -T). With values of e
which are absolutely small, and explicit expression for E in terms of time t can /54
be obtained with the help of the Lagrange formula [38], which is well-known
in analysis.

After obtaining a value of the regulating variable F for a definite value
of t from equation (7.19), with the help of equation (7.18) we proceed to find
the value of the radius-vector r.

Now we return to formula (7.9), which defines the latitude, ¢. Making use
of (7.12) instead of (7.9), we obtain

® r

- cos@dep o ; ar . .

QVEﬁ?ﬁ% Bo=ata | —_—— (7.20)
r”ﬂl/ 2U(r)—7 —+ 204

In place of ¢ we introduce the new variable u, which is the argument of
latitude (Figure 9), being in the form of an angle reckoned in the orbital
plane from the ascending node of the orbit:

sing = sin { sin «. (7.21)

From equation (7.20), with the help of (7.21), we arrive at

r
, . dr

u—B;=a 3 —
P2 l/ 2U (r) __o:_g_ + 2, (7.22)

Let us now determine the meaning of By Since with r = rp, the equality u = 82
is fulfilled, then 82 is equal to the argument of latitude at the moment of

passage through the pericenter. We now introduce the notation:

B. = (7.23)
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and agree to call the quantity w '"the distance between the pericenter and the

node’”. Formula (7.22) reduces to the following form:
g
—-a < dr .
Hme=o o (7.24)
P r2 2U(r)——7= + 204

Let us turn, now, to equation (7.10), which defines the longitude of the
moving point. With the help of the substitution (7.21) we transform equation
(7.10) to the following:

A -83 = arc tan (cos i tan u). (7.25)

On the basis of equation (7.25), for u = 0, the equality A = 83 is fulfilled. /55
We now introduce the notation

83 =Q (7.26)
then, instead of equation (7.25), we arrive at
A - @ = arctan (cos i tan u). (7.27)

1t is obvious that the quantity & is the longitude of the ascending node.

The Two-Body Problem. Let us apply the results thus far obtained to the
two-body problem -- i.e., to the motion of two material points which are
mutually gravitating according to Newtonian laws. If we limit ourselves to
the study of the motion of one of the points (say the satellite) with respect
to the system of coordinates with origin at the other point (the planet), and
also restrict ourselves to constant directions of the axes, then the gravita-
tion potential will be defined by this formula:

U(,)=LMr+_m), (7.28)

where £ is the constant of gravitation, M is the mass of the planet, m is the

mass of the satellite, and r is the planetocentric distance of the satellite.

Ordinarily, the mass of an artificial satellite as reflected in formula (M + m)
(7.28) can be neglected.

For the case in which the mechanical energy is negative, from formulas
(7.18), (7.19), (7.21), (7.24) and (7.27), we can obtain a solution to the
problem by substituting the expression from equation (7.28) for the value of
u:
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r=ua(l —ecoskE), (7.29)

E—esinE=M, (7.30)
where M
M=nU—TLM==¢,
U—@ =0, (7.31)
A - = arctan (cos i tan u). (7.32)
In formulas (7.29) - (7.30) we employ the following conventions:
i = — 1M oy Y M, a5 = VWP cosi, }
(7.33)
Bl:':':"“T'p_ lezmvv ‘B3= .
Here a, e, i, © , w, T are Keplerian elements: a is the measure semi-axis of /56

the elliptical orbit; e is the eccentricity; i is the inclination; Q is the
longitude of the ascending node; T is the moment of passage through the
pericenter; p = a(l - e?) is the focal parameter; and M is the mean anomaly.

If we stipulate that

v 14-e _E_
tan 5 = — tan > , (7.34)

then, from equation (7.29) we have the following value for the radius-vector:

— P
r—1+ecosv' (7.35)

The quantity v, called the '"true anomaly", is actually the polar angle reckoned
in the orbital plane from the direction toward the pericenter.

§ 8. Integration of the Hamilton-Jacobi Equation in Spheroidal and in
Paraboloidal Coordinates.

Let us consider the motion of a material point within a system of
oblate spheroidal coordinates defined by the formulas of (3.20). We shall
assume that the potential of the problem has this form:

U=U(r, ¢), (8.1)

where r and ¢ are spherical coordinates (the potential does not depend upon
the longitude of the moving point). In the spheroidal coordinates of (3.20),
instead of (8.1) we have
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U= U (sh vy, sin ). (8.2)

On the basis of (3.27) we have

L =S [J (4 8%) 4 A2 chzpeos® 9]+ U (sh, sin®), (8.3)
where

J = ch®™p — cos?¥. (8.4)

Applying the second group of formulas of (2.1), we introduce the canonical
moments

Py =02J1i3, po———c*.l\"}, pA=CZCh2'lpC052'ﬁ-x. (8.5)

In these variables the Hamiltonian of the problem is written in the following /57
form:

1 1 1 .
H=7zc—z[7(pﬁ,+p%)+ mpi]—U(shw, sin ). (8.6)

In accordance with (4.20), the problem of integrating equations of
motion reduces to the construction of the total integral of the Hamilton-
Jacobi equation:

= {7+ (F) ]+ g () |~V = (8.7)

On the basis of the second theorem cited in § 5, we establish the most
general form of the force function U, which will enable us to integrate the
equations of motion of (3.28) in quadratures.

For application of this theorem we stipulate that

1

P = c2th?® P, @y =ctg? ¥, @3 =0,
1
P12 = — chEp y Pz = ot 9! P32 = 01

(8.8)

1 1
P =Ggagr P = gmpr Pu=1 J

and compile the determinant

47



. _, c*(ch®’p—cos?T) c2J
A_l(piil_ cos¥chiyp T costdchzp”’ (8.9)

The coefficients Ai we determine with the help of the formula

It is not difficult to assure ourselves that

1

ch? __cos?d _
=G5 A =7 A = Fampeere- (8.10)
For the quantities a, we will have
a, = ch®y, a, = cos?¥, a; = 1. ° (8.11)

Comparing equations (8.3), (8.10) and (8.11), we see that the kinetic
energy of a material point in oblate spheroidal coordinates actually has the /58
form which is necessary for the second theorem of § 5.

To determine the total integral of equation (8.7), it is sufficient, as
follows from (5.18) and (8.10) that the potential have this form:

_O) — 0 0) 8.12
U="p—cst - (8.12)

This form of. the force function (8.12) is necessary for the integration of
equation (8.7) by the method of separation of variables.

In accordance with (5.18) the total integral of equation (8.7) has the
following form :

V="Vash+} V202(D1(1p)+2oclc2sh21p—a2+ v+

+ g —2c2Dy( )+ 2016?1020 - otg— g(gTs\«} dd.
(8.13)

Remark. The force function (8.12), as a limiting case, contains within
itself the potential of (6.17). In order to demonstrate this fact, we
transform the quantities

re=VEF i+ e—ci)t, } (8.14)
re=V&+ 2+ (2+ci)?,
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to spheroidal coordinates P, &:

ri==c(sh y—isin 9),
re=c(sh P ising), (8.15)
We now introduce the spheroidal coordinates q; and q, with the help of

the equalities

g, = csh P, g, = sin 8. (8.16)
Then, from (8.15) and (8.16) we obtain

_r1+f2 fo—1ri1
- 2

0 » Q3= "o . ' (8.17)

Expanding the expressions of (8.14) in the Taylor series by powers of c, we
obtain the following: '

r1=r(1—-%i+.-.).
(8.18)
rz:r(i-l—%i—l—...).

Substituting in (8.17), in place of Ty and T, their expressions from (8.18),

and taking the 1limit as ¢ - 0, we find that oblate spheroidal coordinates
ultimately reduce to these spheroidal coordinates

i =r, 1 — &i ]
1maqy r Cl_l:l; qa sin @ (8 . 19)

[g]

Next, the most general form of the force function, which enables us to
solve the problem in quadratures, is obtained from formula (8.12); in the
latter formula, by virtue of (8.16), we substitute the following limiting
values of (8.19) instead of ¢ and ¢:

U:M—_i‘l__z(@ (8.20)

r2 ’

this yields a potential like that of (6.17).

In problems of celestial ballistics the quantity c is actually quite
small, and for this reason the spheroidal coordinates of a surface are close
to spheroidal coordinates.

Now we shall study the motion of the material point in the paraboloidal
coordinates of (3.39). We shall demonstrate, first, that the structure of the
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kinetic energy in paraboloidal coordinates satisfies the condition of (5.2) of
the second theorem of § 5.

With this purpose in mind we introduce the following system of functions:

Pu=_E, Pez = 1], Qa1 =0,
P32 = 0, (8.21)

Pis=—2E&, Qaa=—1, Qg=I.

The determinant A of this system-of functions ¢ij is as follows:

A =Bt (8.22)
&
We also stipulate that
a; = gv a; = n, a3 = gﬂ (8-23)

From (8.22) and (8.23), we find that

A As=1. (8.24)

=5 =N
ga_l_n'.’.’ A2 —m“
Substituting the expressions of (8.24) in formula (5.16), we obtain the
kinetic energy corresponding to the Lagrangian of (3.41).
To discover the integrable cases we make use of formula (5.17). From

(5.17) and (8.22) it follows that the Hamilton-Jacobi equation can be inte-
grated by use of the method of separation of variables, provided the potential /60

has this form

Uy — 1)+ Do)
e+n (8.25)

where @1 and @2 are arbitrary functions of their own arguments.

We now introduce the canonical moments

c= (@ +ME pa=E+1)1, p = (8.26)

Then the Hamilton-Jacobi equation of (5.20) assumes this form:

ekl G S B2 e
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In accordance with (5.18) we then proceed to find the total integral of
equation (8.27).

§ 9. Conditional-Periodic Functions

As will be demonstrated subsequently, motions describable by Hamiltonian
systems which can be integrated by the Jacobi method with use of the separation
of variables, possess the property of conditional periodicity. In a dynamic
problem with two degrees of freedom, conditional periodic motion can be
treated geometrically in the following manner.

Let the point in question move along the surface of a torus (Figure 10).
As Lagrangian coordinates describing the motion
of the point on the torus, we can take the
longitude qy» reckoned in the equatorial plane

of the torus from a given direction assigned by
point 0, and the latitude, Qy- The angular

coordinates a and a, will be expressed in radians.

Let the coordinates of the point satisfy the

Figure 10. equations
d. d
—d—?‘=(0n dii=ﬁ)2o (9.1)
where the quantities Wy and w, are called '"frequencies". Then, if ml/w2 = p/q, /61

while p and q are whole numbers, after a certain interval of time

t = E£B-= 2%33 the point will have returned to its initial position, having
1 2

made q revolutions along the meridian, and p revolutions along the parallel.

The motion of the point will be periodic; however, the trajectory of the
point will be closed following several "revolutions''.

If, however, the ratio p/q is an irrational number (the frequencies wy and

w, are incommensurable), then the point will never return to its initial

position. It is this sort of motion which is called conditional-periodic in
celestial mechanics. The trajectory described by the point can be plotted
on a plane in Cartesian coordinates. Since, according to (9.1), a and q, are

linear functions of time, then motion on the plane (ql, q2) is represented by
a straight line.

So-called conditional periodic functions are used to describe conditional
periodic forms of motion. If, on the torus, we assign the function f (ql,qz),
which is expanded in the Fourier series

Fau g =2 apeexpli(pg+ qq)1,

Py q=—00
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then, in correspondence with (9.1), the variation of this function with
respect to time will be described by this formula

foe)

FO) =Fla1(0), q2(t)] = 2 g €Xp [ (pwy + qug) £ + tpg]. (9.2)

n, g=—oo

Functions like (9.2) are encountered in the solution of most problems met with
in celestial mechanics and celestial ballistics, or in the study of perturbed
motion. These functions are called '"conditional-periodic'.

If the mechanical system possesses n degrees of freedom, then for a
geometrical interpretation of the motion one can adopt an n-dimensional torus.
The position of the depicted system of the point is defined by n conditional
coordinates xl(t),...,xn(t).

Definition. The function f(xl,xz,..., X1s Yis Yoseres yn) is referred to

as a conditional-periodic with respect to the arguments Xps Xpseues X which

have a period w = {wl,wz,..., wn}, provided the following identity obtains: /62
f(x1 +0,)1, Xg +(!)2, e ooy Xp _,—(Dn, Y1 Y25+ + o yn)E (9.3)
= f (xli xz; sy Xn, !/1» yz, LS ] yn)

Here the quantities X1s Xpseees X, cam be treated by angular coordinates

on an n-dimensional torus, or else as orthogonal coordinates of a point in
n-dimensional space. Then the period w must be regarded as an n-dimensional
vector. The components of the vector ws we shall call "elementary periods".

It is not difficult to demonstrate the justfication of the following
theorems.
Theorem 1. If the function £ (xl, Xpseoes Xn’ Y1s Yoseeos yn)possesses
the period w, then it will also possessthe period Aw = {Aw,, Aw,,..., Aw_J,
X 1 2 n
where A is any whole number.

n
conditional-periodic with respect to Xys Xpsenes X and if it has two
periods

Theorem 2. If the function f(xl, Xpseoes X5 Vs Yosenes yn) is

01 = {031, O3, ..., O1n}, @g={Wg, Ogg, ..., Won},’
then their vector sum

01 + 0y = {©13 } W1, O13+ a3, ..., Oy -+ Oz}
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is also a period.

) Corollary. If the function (f X5 Xgyeows Xos Yys Yoseves yn) has k
periods

©;={W;1, 0;3,..., O} (t=1,2,..., k),

then any linear combination of the vectors ws with interval coefficients is
also a period:

k k & k
2 Ao, = {2 Ao, 2 Aoz, ey E 7\'i(0in} . 9.4
=1

=1 i=1 i=1

We shall assume that no function possesses an infinitely small period:
in other words, the absolute value of a vector w cannot be less than any
preassigned number however small. If this condition is met, then we can
accept the following theorem:

Theorem 3. If the vectors w and Aw are periods of the function f(xl,

X e X5 Yys Yoseees yn) then A is a rational number.

22" n

Proof. We shall make use of a theorem from the theory of numbers. If A
is an arbitrary irrational number, then it is always possible to designate
two whole numbers p and q such that the quantity |p + qx| will be less than
any preassigned number.

Let us assume the contrary, namely that X is an irrational number. Then
we can always designate two whole numbers p and q such that the quantity
(p + qA) w, which by virtue of Theorem 1 is a period of function f, will be
arbitrarily small. But if that were so, f would have an infinitely small
period, which is impossible.

Corollary. Every period for any given direction can be represented as
a multiple of the smallest period for that particular direction.

Theorem 4. If the function f (xl, Xoseees xn, Yo Yooeees yn) is

conditional-periodic with respect to Xys X o X then there exists a

IR

system of periods w . such that any of the period of function f
p Wy p

1 wz,..
are representable in the form

k
0 =3 ho, (9.5)

i=1

where Ai represents whole numbers, and where the number of periods k does not

exceed the number of variables n.
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Proof. Let us limit ourselves to the case n = 2. Let f(xl, Xos Yyseoe

cees yn) be periodic conditional with respect to Xy and X, - Let us consider

all possible periods of this function, disposed in the order of their
increasing absolute values:

00| < 00| < |o® < -

This will leave us with an infinite sequence, since by virtue of Theorem 3,
the set of periods is denumerable, while the case of a function with an
infinitely small period has already been excluded.

(1

Let us select from this sequence the period wp = W, and the first
period following it, Wy = w(z), which does not coincide in direction with
its predecessor. On the plane (xl, x2) let us construct a network of

parallelograms whose sides are defined by the vectors wy and w, (Figure 11).

Let us regard the period which is colinear

i with Wy - Let us assume the contrary -- namely
: that we have found a period w which is characters=
@, ized by a vector whose end does not coincide with
the node of the constructed network of parallel- /64
ﬁ rd
/ //ny //i;// ograms. Then, according to the corollary of

Theorem 3, either the period wy will be a multiple

Figure 11, of w, or the period wq is a multiple of w.

But the first is impossible by assumption, and the second is impossible
by virtue of the choice of the period W, -

In the general case, one can conclude that to any period of arbitrary
direction there must correspond a vector whose end coincides with the node
of the network of parallelograms; for in the opposite event, this vector
would have to be smaller in absolute value than |w,|, which contradicts the
choice of the vector w,. “

Definition. The aggregate of periods which satisfy the conditions of
Theorem 4 is called a '"periodic system'.
If we consider the conditional-periodic function £ (Xl’ Xgseoes X Y5

Yoseees yh) with n periods, then in an n-dimensional space there will be a

lattice (the analog of the network of parallelograms) which is defined by a
periodic system. The periodic system can be selected in various ways. The
periodic system {ml, Wose ooy mn} can be replaced with another having the same

number of periods
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n
fﬂz=‘-2 Mo (=1, 2,..., n).

C k=1
If the determinant det llikl is equal to +1, then the periodic system is
called ‘'simple'. With the help of transition from the variables x; to the new

variables w., the function f can be transformed in such a way that it will
have the simple periodic system

(L0, ...,0),
(0’ 1""s0)’
(0'\0' - ,~ 'l-:,‘l)'_,

§ 10. Conditional-Periodic Motions
Suppose that for the Hamilton-Jacobi equation (4.17) we have found its
total integral in the following form by the method of separation of variables:
V=—-oc1t—i— }]V,(q,, Olyy Olg, ...,dn). (10.1)

=1

Then the generalized moments 1 will be functions only of the corresponding
conjugate coordinates

Pi = Vi’ (qir Oy Qgy o+ o an)' (10_2)

Since in practical cases the moments p; in a Hamiltonian occur only in the

second degree, then as a result of the separation of the variables in the
Hamilton-Jacobi equation, and integrating the function Vi, we will have the
following structure (CM., §5):

Vi = @ (g2)- (10.3)

If the relations of (10.3) hold, then we may encounter three types of
variation in the coordinates q,° libration, rotation and asymptotic motion

(see [28]).

Let qi and Q¥ be two adjacent routes of the equation
@, (g;) =0, (10.4)

and let the quantity @i(qi) assume positive values for all values of CH which
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satisfy the condition

@< g <q,

In such a case the moments will approach zero only when q; = qi and 9; = qg.
If qi and qg are simple routes, then q; will assume all the numerical values
included between qi and q;. To express this situation, we say that libration
occurs only with respect to the coordinate ;> while the quantities q; and qg
are the "limits of libration". For libration on the plane (qi’pi) there
exists the closed curve pi -¢i(qi) = 0. If, with change in the constance of

integration, the closed curves retract toward a certain point, the latter is
called the center of libration. It is to this center of libration that the /66
stationary solution corresponds.

If qi and qf are simple routes of equation (10.4), between which, in the

case of variation in the numerical values of integration no new routes arise,
then the state of equilibrium is stable. On the other hand, if with variation
in oy between qi and qg some new routes appear, then the condition of equili-

brium may be unstable. In such a case, for a certain system of values of
the constant a;, one of the routes qi and qg becomes multiple, and then, for

certain initial conditions of the coordinate, a; will approach the state of
equilibrium asymptotically. This is referred to as "limiting motion'.
If the function @i(qi) is periodic with respect to q; (without limitation

of generality we can assume that the period is 2w) then the motion is
referred to as rotationall. (In rotational motion of the coordinate, a is

a monotonically increasing function of time). This type of motion occurs
if o, (qi + 2m) E @i (qi), and if o, (qi) > 0.

Let us assume now that for every coordinate the motion is either rotational
or librational, and then proceed to examine the integral

Jo=§pda, (=1, 2. n) (10.5)

(this integral, in the case of vibration, is taken over the closed loop defined
by the equation p% - @i(qi) = 0, and, in the case of rotation, between the

limits of 0 and 2nw). In place of the canonical elements o, we introduce the

1 By the introduction of the rotational coordinate Qi = sin ;> rotational

motion reduces to librational motion. However, if we do this, the
libration limits become independent of the initial conditions.
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new variables Ji' Then V can be expressed as a function of Js and q; - The
generalized coordinate a3 will be replaced with the quantity W, which is
defined by the relationship

ov :
w,=5'—,: (l=1v 27""';“)' (10'6)

The quantities J; and ws will now become new conjugate canonical elements.

"They are referred to as "action-angle elements' (Ji represents the variables /67

of "action", W, the variables of "angle" type). These so-called action angle
elements were introduced by Delon. Later on they were put to use by Bohr and
Sommerfeld in quantum physics.

Let us examine certain of the properties of the canonical elements which
have been introduced. To do so, we calgulate the increment of w, for a full
cycle of variation in the coordlnate Q.

ow
A,.w1~<§> *dg,. (10.7)
From (10.6) and (10.1) we learn that

n
39 aJ aq,, 2 (')J qu

A

v, a9 (3,
- (%)

9.
d 9q,, dq,

it
-t

12

Substituting the expression obtained in (10.7), we then have

o ¢ v, o,

A W; —= —— ——— = e— = -
kW a‘,i qu qu aJ‘ = 61/@9

(10.8)

in which sik is a Kronecker symbol.

Thus, if any coordinate qy prevents the full cycle of variation, then the
corresponding variable Wy is varied by a whole unit (it should be noted that

physically such a variation is not always possible, and that therefore the
result arrived at here characterizes a purely mathematical aspect of angular
variables).

The reverse proposition is also true. If the angular variable Wy
increases by a whole unit, then the coordinate > which is uniquely defined
in terms of Wy in the case of libration returns to its initial value, and

in the case of rotation increases to 2.
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Let us examine the structure of the solution defined by the total inte-
gral of equation (10.1). If this integral is regarded as an arbitrary function
of the canonical transformation

11%
Pi—'a—q;,

av
Q&——iﬁr

(i=1,2 ..., k)

(10.9)

of variables P:s dy to variables @ ¢i’ then, on the basis of equations /68

(4.11)-(4.13), the new Hamiltonian K will be dependent only upon the quantity
o,
i

K=K (o, ag, . .., a), . (10.10)

in other words, the variables ¢i are cyclic, and the general solution of the

problem can be written as follows:

a; = const, @, =t + B, o, = %;i (10.11)

In practical problems, the new Hamiltonian K by virtue of equation (10.1)
usually depends only upon the constant of the generalized integral of energy
ays and hence

(10.12)

so that the solution of (10.11) becomes

a; = const, @y =1¢+PB;, ¢ =104 ..., @ =P (10.13)

On the basis of equation (10.8), the motion is conditional-periodic. This
means that for its description it is most convenient to use canonical variables
such that the periodic system will be simple. Let us perform the canonical
transformation to variables a;, ¢; with the help of the generating function

Vo= (et oy ooey o) Pp ok g (s ey 0, (10.14)

k=1

which yields the following:
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oy = f; (0‘;: Caes O,

‘n y

. af, og
o, = ——.—-(P +_—‘_ .

P 3 -Z\'l'aa‘. EY oy

(10.15)

The general solution of the corresponding system of equations of motion
may have the form of equation (10.11), but in that case K will no longer

depend merely upon a¥, and, consequently, not only mi but also other values

of w; = K& will in general be different from zero. Just as in § 9 we can /69
assume that the motion takes place along n-dimensional torii a; = const,

while ¢; will play the role of angular variables defining the position of the

point on a torus. For an arbitrary choice of the variables a; and ¢§, a

periodic system is not simple. Obviously, a system of canonical "action-
angle' variables, defined by formulas (10.5)-(10.6), can be obtained from
transformations like that of (10.15). The elementary periods for these will
be equal either to zero or to unity. This peculiarity of a "angle-action"
variables makes them particularly convenient in practical situations.

Therefore, by virtue of equation (10.11), we have

av

w; =i+ 6 v, = T
L

(10.16)

where Ji’ 61 are constants. According to (10.8), the old variables q; are
conditional periodic functions of the angular variables W, . This means that

the coordinates qZ(Z = 1,..., n) can be expanded in multiple Fourier series:

—+oo
[t} VALVt by V(484 o 4 B,,)]
q,= 23 Cuiu,m.%)en aTalTEe nonll (10.17)
L1y ovee i”=——oo

Or, making use of the vector form of recording, and substituting

i:{il, iz, ...,in}, a={6lv 62, ve ey 61‘1}7
vy = {vlt Va2, « 0oy 'Vn},
(i, ¥) =iy + fagvg 4+ - o vy, (10.18)

(i, 8) = ix0; + @203 4 ... + in0n,

in place of (10.17) we will ‘then have

q, = Ecy)eznlfflm. vit+(i, 8)] (=12 ... 0. (10.19)
)
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In the theory of perturbed motion the properties of the vector v turn out
to be quite substantial. If between the frequencies vy there does not exist
the identical relationship

(A, v) =0, (10.20)

where A is a vector with interval components, then the dynamic system is /70
referred to as 'non-degenerate'. If the relationship (10.20) is fulfilled T
identically, then eigendegeneracy takes place, and the system is referred to

as "eigendegenerate'. If the relationship (A, v) = 0 is fulfilled only when
certain initial conditions are given, we say that '"random degeneracy' takes

place. Finally, there is still another possibility in conmnection with

degeneracy. If the lower and the upper limits of libration for k coordinates
coincide, then in an n-dimensional space of generalized coordinates, the

trajectory fills a region whose number of measurements is n -~ k. In this

event we speak of "limiting degeneracy".

Let us take an example of limiting degeneracy. We shall assume that a
point is moving on a rotating ellipse. Then, during the process of motion,
the point will everywhere densely fill the annulus whose outer and inner
radii are defined by the pericenter and the apocenter. With respect to the
radius-vector the motion will be of vibrational character. If, however, we
alter the initial conditions in such a way that the eccentricity of the
ellipse approaches zero, then the limits of libration will approach each
other, and the annulus will contract into a circle. In the limiting case,
instead of a two-dimensional region we obtain a one-dimensional region. With
zero value of eccentricity, limiting degeneracy appears.

Now let us establish one of the basic properties of conditional-periodic
motion [39].

Theorem. If the motion is of librational character and is, moreover,
non-degenerate, then the trajectory will everywhere densely fill the region
of generalized coordinates which is limited by the hypersurfaces defined by the
limits of libration.

Proof. For simplicity we limit ourselves to a system with three degrees
of freedom. We shall-take "angle-action' variables as our canonical variables.
Then the system will be simple-periodic, and will be equal to unity. Let us
introduce a rectangular system of coordinates (Figure 12) with origin at a
certain point O in a space of angular variables wos Wos Woe Let eys e2, €z

be the unit vectors all the corresponding coordinate axes. Then, on the
basis of (10.16), the trajectory defined by the equations
w.=vkt+6,, (k=1,2,3)

is a straight line, while the direction cosines of this straight line are /71
proportional to the frequencies Vis Vys Vze By the condition of the theorem,
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the motion is non-degenerative, and, consequently
the values of Vi will be incommensurable.

e In this proof we make use of the concept of the
e 2 & : equivalence of the two p01n?s (wl, 22, WS? and
2 (wi, wé, w%). These two points are described as
(4 .
"equivalent" when the vector joining them is of the
form
Figure 12, 3

Z Agviep,

=1

where Ak represents whole numbers.

Having replaced every point with one equivalent to it, we can then limit
ourselves to an examination of the behavior of the trajectory within a unit
cube. Let PO’ Pl’ P2,... represent the points of intersection of the tra-

jectory with the faces of the cube. For convenience we shall assume that
the origin of coordinates 0 coincides with the point PO. As a consequence

of the incommensurability of the frequencies v,, no one of the points Pi will

3

coincide with any other. k
On each of these faces we can construct an infinite set of vectors

Pmpn’ which together join Pi points. It is obvious that it is always possible

to detect at least one vector pmﬁn whose absolute value is less than that of

any preassigned number however small, This follows from the theorem takes from
the theory of numbers which was cited in § 9.

Now let us consider the distribution of points Pi on any of the faces of

the cube -- for example, on face e e By reason of the non-degeneracy, there

2?73
will be found a terminal number ¢ such that the point P_ will lie on the face
€5, ©g- Taking this point as the initial one, let us eXamine all possible

vectors Pcﬁn. These vectors define all points of the trajectory lying on face

€55 €5- We shall show that these points cannot lie on a straight line.
If we assume the contrary, then for any two points Pi and Pé of this
face of the cube which belong to the trajectory, we have /72

Vs

P;{"—lx,—E (- x): x—E (o x,)} (i=1,2)

and, in addition we have the point
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Pt 3 -e()

By reason of the coplanarity of the vectors 3&Pi, we obtain

R R-E@).

Vg V3 Vg V3
ViXg ViX VX Vox

_E(Mn 2 E(Vem _ 10.21
Vg (vs)’ V3 E(Va)’ 1{=0. ( )

‘lee_E(Vx:z), szz__E(’V?.xz), 1

Multiplying the elements of the first row, first by Xqys and then by Xy

deducting from the results obtained, the elements of the second and the third
rows, respectively, we transform equations (10.21) into the following:

noe®), o), !

() () B e () a0

) nE (2), E(2)—nE () Wt

3 3 Va

Since, by the condition of the theorem v, are incommensurable, then

n'vl. Y

% (2)ko =19,

V3

and therefore the preceding condition is rewritten as follows:

i I )

V3 / V3 3 V3

() — e (), () — e (31)]

Dividing the elements of the first row by Xy - 1, and converting to the limit

for x1 - », we arrive at

g%, .
e u = 0.
E(xi:z)-xz, sz(::)*l
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But this is inconsistent with the condition of the incommensurability of the

frequencies v, and v,. Consequently, the set of points {P;} belonging to the

face e,, €; cannot lie on a straight line. Analogous reasoning can be applied

3
for the other faces.

It is now clearly evident that the points of the trajectory which lie on
the faces of the cube fill the latter densely everywhere. Consequently, the
trajectories pass as close to any of the points of the cube as one cares to
stipulate.

J. Vinti, while studying the motion of artificial earth satellites on the
basis of the problem integrable with the help of Stackel's theorem [40], took
up the question of mean motions within Stackel's systems [41]. Below we
extend the results obtained by Vinti to arbitrary dynamic systems which are
integrable with the help of Jacobi's theorem by the separation of variables.

Theorem. If the dynamic system is such that a single-valued Hamiltonian
exists within the considered region of variation of the generalized coordinates,
and if each of the generalized coordinates possesses a libration variation, and
is, moreover, a single-valued and differentiable function of canonical varia-
bles of the "angle'" type, then the mean frequency for each of the coordinates is
equal to the frequency of the corresponding angular variable.

Proof. Let T be the interval of time containing a whole number of cycles

Nk of variation of the coordinate 9y - By the term "mean frequency of nk” we

shall understand the quantity

. N
ne = lm == (10.22)

T 00

assuming that this limit exists. Now it is necessary to show that for
conditional-periodic motions

= vy (10.23)
where, according to (10.16) /74
oo
k'—aJk.

If all values of v; are commensurable, then we can find a positive value Vo

and also certain natural numbers m, m - M, such that

95
Vi = MpVe (k = 1: 2’ LIS} n)' (10.24)

By reason of (10.8) and (10.24), for real motion we have
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wg (f) =wg (0) + myvel, (10.25)

and for the interval of time T = 1/v0, the variation in Ws according to
equation (10.25), will be

Awk = mk_ (10.26)

In this case each of the coordinates A completes m full cycles, and the motion

is periodic, with the period of 1/v0. Thus, the mean frequency n, is equal to

.nk_—,%’f.zmkvoz Vi (10.27)
If the frequencies vy are incommensurable, then we stipulate
(10.28)

gh = Vg Vi,

in which case at least one of the quantities Ek must be irrational. As above,
we find

wy (f) =wy (0) + Eavy L. (10.29)

Making use of Dirichlet's theorem to the effect that if among the real
numbers El’ £2,..., En’ then there is at least one which is irrational, and the

system of inequalities

R -—1-.-1—- ' C
|G =T | <PTTE (k=1,2,.0 ) (10.30)

admits of an infinite set of integral solutions with respect to P and n, and
a solution for P is not limited above.

Let us consider those values of T = P/v1 for which there exists a whole

number which satisfies the inequalities of (10.30). In the course of this /75
interval of time, each of the angular coordinates Wy varies from the initial
value wk(O) to the magnitude

wy (T) = wy, (0) + PEa. (10.31)

But, on the basis of (10.30)

PEy = my + My, (10.32)
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while

l“kl<P "v (10.33)

so that

wy, (T) = wg (0) + mp + M (10.34)

While P assumes increasing values which satisfy the conditions of (10.30),
each of the magnitudes Myes in correspondence with (10.33), approaches zero.

On the basis of the foregoing theorem, and also equation (10.34), there exists
an infinite set of values of T for which the trajectory in a space of canonical
variables of "angle" type approaches as close to the points as one desires;
here, Awk = m (mk is a whole number).

Let

gn 0) = fr @, (0), w3(0), ..., wx(0), (10. 35)

and for t = T

qn (T) = fh. [wx (0) + m, + Ny « - o, Wy (0) + m 'i" nk]- (10.36)

If, according to (10.30), P increases without limit, then Q approaches the
quantities

Grn =Fr [0 (0) + my, .. ., wy (0) + myl. (10.37)

It is evident from eqqation (10.37) that Awk = m (k =1, 2,..., n). But in this

event the time interval T contains an integral number of full cycles of variation
in each of the coordinates. According to the definition of equation (10.22),
we arrive at the following mean frequency:

ne = lim 2% (10.38)
T
This limit exists, so that /76
my vyt
T — P
and therefore
lim 2% = ¢
L R (10.39)
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Thus, n, = vlgk = Vy- The theorem is proved.

§ 11. The Problem of Perturbed Motion

Both the problems of classical celestial mechanics, and the new problems
of celestial ballistics, in the majority of cases cannot be resolved in
quadratures in finite form. Therefore, celestial mechanics makes extensive
use of approximation methods for solving systems of differential equations of
motion, particularly the various forms of the method of successive approxima-
tions.

Let us suppose that we are studying a mechanical system whose Hamiltonian
function H, on the basis of physical or mathematical considerations, can be
broken down into two portions:

H =H, + R, (11.1)

then the function R in the region of variation of canonical variables which
interests us remains quite small in absolute value in comparison with the

first term HO' Usually, the function R contains one or several small parameters,

and drops out when these parameters approach zero. The role of the small
parameter can be played by the mass of the planet in the sun-planet-spaceship
or by a quantity proportional to the flattening of the planet, in the problem
of the motion of an artificial satellite of the planet. Sometimes the small
parameter is introduced artificially, for example, by means of transformation
of variables.

If within the region of phase space which interests us P;s 955 the follow-
ing condition is always met

IR| << |H (11.2)

ol
then we can always assume that the Hamiltonian of the problem has this form:
H=Hy(p,q +R W p g, (11.3)
in which
R(0, p, q, t) = 0. (11.4

The term HO is called "unperturbed" and is constructed usually in such a way
that the simplified problem with a Hamiltonian Hy either can be integrated in

quadratures, or admits of a certain family of solutions. The motion defined by
the Hamiltonian H, is called "unperturbed'", while the motion defined by the
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Hamiltonian function H, is called 'perturbed'". The function R is called
perturbed or "perturbation'.

Let us write the canonical equations of perturbed motion:

dql oH .ipi -,_—_-——'QE" .
@ =, & 04, (11.5)

If uw = 0, then instead of (11.5) we have these equations:

49, _OHo = 9Py _ oo (11.6)
it = o, a = g,

We shall assume that system (11.6) can be integrated by the Jacobi method. Let
V=1V (t, a, q) (11.7)

be the total integral of the Hamilton-Jacobi equation describing unperturbed
motion.

Taking (11.7) as the generating function, we transform system (11.5) to
new variables a, and Bi. In correspondence with (4.11) - (4.13), the new

system of canonical equations has this form:

ap; aR

dy, @8R __ R
=o' &~ o (11.8)

¢

The new variables o, and Bi are referred to as osculating elements in celestial
mechanics.

System (11.8) is solved by the method of successive approximations; as
zero approximation for the variables ay and Bi we take the constant values /78

corresponding to unperturbed motion:
o =do? , B =p?. (11.9)

The method of successive approximations enables us to represent the sought-for
quantities in the form of series arranged in order of increasing degrees of
the small parameter:

o0 = o 4+ 3 prath, B =B+ 2 B (11.10)
: g t k=1

k=1
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The individual terms of these series are called perturbations or inequalities,
and the exponent of the small parameter in the term under consideration is
referred to as the order of perturbation.

Depending upon their analytical structure, perturbations are reduced to
three categories:

1) a perturbed type

Ak, (11.11)

where A is a certain constant coefficient which depends upon the initial values
of the elements, and k is a natural number; these are called 'circular';

2) a perturbed type
A sin (vt + §), ' (11.12)

where A, v, § are constant quantities which depend upon the initial conditions;
these are referred to as "periodic'";

3) perturbations having the form

Atksin (vt + 8), k50, (11.13)

are called 'mixed".

The delineation of perturbations of these three types is conditioned by
the character of the solution of the unperturbed problem in the case of
libration motion. Since, according to (10.19), generalized coordinates in
unperturbed motion are represented in the form of multiple Fourier series, then
the perturbation function in the system of equations of perturbed motion (11.9)
is also expanded in multiple Fourier series, this system being independent of
the variable in which time appears. From this it is obvious that with
integration of system (11.9) by the method of successive approximations, the
series which represent perturbed motion may contain only terms of the type /79
(11.11) - (11.13). T

An extremely important question in both celestial mechanics and celestial
ballistics is that of the combined effect of all the sought-for and mixed
perturbations. Can we expect that, as a result of circular perturbations, the
perturbed and the unperturbed values of the osculating elements will eventually
diverge by an indefinitely wide margin? Or is it possible that the combination
of all circular and mixed perturbations is actually a periodic function of time?
Is it not possible, as well, that circular perturbations are really defects
produced by the mathematical methods employed?

In order to discover the essence of this problem let us consider the
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differential equation
(11.14)

in which u is the small parameter. If we look for a solution to this equation
in the form of series of degrees of a small parameter, then we get

X=X,+t - ... (11.15)

At the same time, in finite form the general solution of this equation is
written as follows:

x = % + -&-sin pe. (11.16)

As is apparent from (11.15), perturbations of any order are circular, while
from (11.16) it follows that in combination they yield a periodic perturbation
with period 2w : u. Since the quantity p is small, then the period of perturbed
variation in the quantity x will be very large. An infinite combination of
circular perturbations x corresponds to a single-long period inequality. Thus,
in the example considered, circular perturbations have arisen as a result of

a weakness inherent in the method of successive approximations.

We should ask ourselves whether this same thing might not take place in
problems of the motion of celestial bodies. Many studies have been devoted to
this problem, most recently those made by V. I. Arnol'd [42], Yu. Mozer [43],
and others, in which significant progress was made. In Chapter 6 we shall
examine this question in further detail.
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CHAPTER 11

NEWTONTAN GRAVITATIONAL POTENTIAL OF AN ABSOLUTE SOLID

§ 1. The Potential of Volume Masses. Laplace's Equation. /80

There are many situations in classical celestial mechanics in which it is
quite satisfactory to replace real gravitating masses with material points.
This is due to the fact that the "dimensions of gravitated bodies frequency
are neglibly small in comparison with the distances which separate them. In
the case of celestial ballistics, however, the situation is entirely
different. Either during the course of the entire flight, or during individual
stages of motion, the spaceship is in the immediate vicinity of the gravitating
body, from which it is separated by a distance which is of the same order as
the dimensions of the body itself. 1In this situation it is necessary to take
very careful account of the perturbing influence exerted by the shape of the
gravitating body. Therefore, the methods used to compile the gravitational
potential of the planet are of great interest from the purely practical point
of view.

In studying the potentials of celestial bodies we shall proceed from two
assumptions.

1) The gravitating body is an absolute solid and is undeformed.

2) The gravitating body is fairly similar to a sphere with radial
distribution of density.

We shall adopt a rectangular Cartesian system of coordinates with origin
at a certain point 0 of the body, the coordinate axes being directed along
the main axes of the ellipsoid of inertia of the body (Figure 13). Let
k (&, n, z) be the density of the body at the moving point M (£, n, ) and let

A=V x—EF+ (y—mn)y+(2—1)* be the system between the point M and the point
P (x, v, z), which is outside the body.

Then the gravitational potentiall of the element of mass dm which includes /81
point M is defined by the equation

fd d
du =" e (1.1)

where f is the gravitational constant, dt is the element of volume. Integrating
with respect to volume occupied by the body we find an expression for the

1 We should remember that the term ''potential" in the theory of gravitation
was introduced by Gauss [44].
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gravitational potential of the entire body at the external point

4 ® dT

U = F 5 (1.2)

In formula (1.2) the integration is performed
over the entire volume occupied by the body

Y. under consideration. The potential U is the
//////' 4 differentiated function of coordinates through
M the entire external space.

The gravitational force F exerted by the
% body is described by the formula

- F = grad U. (1.3)

performing the two partial differentiations on
Figure 13, equation (1.2) with respect to X, y, z, we

establish that within the external space the

potential U satisfies Laplaces equation:

02U U U
AUZW_I_—G?——'——&E‘T_O' (1.4)
If we assume that the density x(&,n, z) has continuous first-order partial /82

derivatives within the body, then it can be shown that at intermal points of
the body the potential satisfies the Poisson equation:

AU = — 4nx (x, y, 2). (1.5)

The potential of the body can be calculated directly with use of formula
(1.2). This direct method, however, is not the best one. Since the potential
U in external space satisfies Laplace's equation, and, therefore is a harmonic
function, then it is frequently preferable to employ a different method for
finding the potential -- a method associated with the equations (1.4)-(1.5).
When this is done it is necessary to solve Dirichlet's external problem. We
shall proceed on the basis of Dirichlet's theorem, the proof of which may be
found by the reader in various special textbooks on the theory of the Newtonian
potential [45, 46]. This theorem is as follows.

Theorem. If the density « within the body possesses continuous first-
order partial derivatives, then the function U (x, y, 2z), which is regular at
infinity, satisfies the following equation:

0 outside the body,
—4anx  inside the body,

AU={ (1.6)
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and coincides with the gravitational potential of the body.

Let us note that from the condition of regularity of the potential at
infinity, the following condition results:

p—

-

where p::]fx24-y24~22, while nz==sggacdr is the mass of the gravitating body.

The effectiveness of determining the gravitational potential by the second
method depends upon the choice of coordinates. Frequently it is more eonvenient
to approach the solution in curvilinear coordinates Qys Aps dzs rather than in

rectangular coordinates. When this is done, the coordinates must be so choosen
that the Laplace equation will be soluble by the separation of variables. First
of all we transform Laplace's equation to new variables 41> 4,5 Az associated /83

with rectangular coordinates:

X=X (qlr T2 Cla),

Yy =9 (91, G2 q3)» (1.8)
2 =2 (qlv qZ» 173)

The simplest form of Laplace's equation is obtained orthogonal coordinates
(see (3.4), Chapter I).

As a result of calculations, we obtain the following for the Laplacian:

‘ U 0 (HiH, U
AU = _1~{ O (Hafs U\ , 0 (Hifls } 9
H1H2H3 5(71 ( H, dql ) aqg ( Hs Oqg ) + Oqa ( Ha 6q3 ) ! (1 )

where the quantities Hi are the Lamé coefficients, defined by formulas (3.6),
Chapter I.

Spherical and degenerate ellipsoidal coordinates are most frequently
employed in problems of celestial ballistics. Laplace's equation admits of
separation of variables in both of these systems of coordinates.

Making use of formulas (3.16) in Chapter I for the Lamé coefficients in

a system of spherical coordinates, we can use equation (1.9) to obtain Laplace's
equation in spherical coordinates:

10 (,0U 1 o U 1 U
72—'0_7(r _a_r-) + rfcos g B&T(C°5¢5q7)+ rPcost @ OAE 0. (1.10)
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In the new studies made on the theory of the motion of artificial earth
satellites by J. P. Vinti [40], M. D. Kislik [47] and others, the potential
of terrestrial gravitation is found from Laplace's equation written in one of
the systems of degenerate ellipsoidal coordinates. We make use of the
spheroidal coordinates (3.20) Chapter I, analogous to the Thiele coordinates:

x = cch cos ¥ cos A,
y = cchcos ¥ sin A,
z = ¢ sh sin 0.

From (1.9), with the help of expressions for the Lamé coefficients (3.25)
Chapter I, we arrive at the following form of Laplace's equation in oblate /84
spheroidal coordinates:

QB

(5}

c‘~‘(ch'~’¢1—c05‘-’ 0){co:0 Fg‘(ws“)gal) + @ b—?p‘(Ch‘pg%) t (co_siﬁﬂch:w e } =0 a.ab

The same method can be used to obtain Laplace's equation in prolate
spheroidal coordinates, as defined by the transformation formulas (3.29)
Chapter I:

1 4 8 (.o, 0uy, 1 9 ou 1 1 \eU
F(chfo — cos? ) {;inu ﬁ—(smu au)+ shv dv <Shv av) +(sin3u + sh"v) ow? 0. (1.12)

In solving problems in the theory of the potential, it is convenient to
make use of the expansion of harmonic functions in series in terms of spherical
functions. We shall give some brief information on these spherical functions
in the following section.

§ 2. Spherical Functions. Lagrangian Polynomials

Let us consider Laplace's equation in spherical coordinates (1.10), and
look for partial solutions of this equation in the following form:

U(r,e, &) =R (ND (@) A (M) (2.1)

Obviously, determining any of the multipliers of equation (2.1), as a result
of the separation of variables in equation (1.10), reduces to the integration
of an ordinary differential equation of second degree.

If we multiply equation (1.10) by r2 cos2 ¢, and transfer the term which
depends upon A to the right, we arrive at the following equation, following
substitution in Laplace's equation:

1 d (rzdR) 1 d

2 d“’)]__}_d_”\_
cost o[ % 4 (7 G =T xn

+ Dcos @ w(coscp%-
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This is possible, however, only if both members of the equation are constant
quantities. Designating this constant with the symbol k<, we obtain the

following equations for determining R, & and A: /85
d%,—kle.—-O (2.2)
1 d dR 22 1 d do
??i?(r dr)"— cos? ¢ —Q)coscpfi_cf(coscp' 71'?9—) (2.3)

On the basis of the same reasoning, both members of equation (2.3) are equal
to one and the same constant, which for convenience we shall designate with the
symbol n (n + 1). Then we have the following:

co:cp r%(cosq)'ﬁ) L”("+l)_c°s-cp] ® =0, (2.4)
2 (2R) —n(r+ 1R =0. (2.5)

Thus we see that determining any of the multipliers leads to integration
of equations (2.2), (2.4) and (2.5). Here the choice of the constants k and n
must be such that any of the solutions of equation (2.1) arrived at will be
a harmonic function. Then the solution of boundary-value problems of the
Newtonian potential can be obtained by means of the superposition of various
partial solutions, as is usually done when the Fourier method for integrating
equations in partial derivatives is used.

The general solution of equation (2.2) has this form
A = A cos kA -+ B sin kA,

where A and B are constants of integration,

As regards equation (2.4), in the theory of the potential we make use
only of those solutions which correspond to the natural values of k and n,
with the proviso that k must not exceed n. Partial solutions of equation
(2.4) depend upon the constants k and n, and therefore it is convenient to use
the designation P (sin ¢).

Combinations of solutions of equations (2.2) and (2.4) of the form

Yol(@, A) = D) Ph(sin @) (Ane cos kA Bus sin k), (2.6)

k=0

where ALk and By are arbitrary constants, are called '"general spherical

functions of the n-th degreel.

1 spherical functions were first introduced by Laplace.
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In studying the solutions of equation (2.4), we begin with the case k = 0. /86
Substituting

y =P (p), x =sing,

-

we first transform this equation to the form

0

k2
w1 dy}%—[n(n—kl)—T_—g]y:O' (2.7
With k = 0, instead of (2.7) we will have
d d =
E[(l~x2)i%]+n(n+l)y—o- (2.8)
Partial solutions of this equation P (x) will subsequently be denoted by the

symbol P (x) L.

It is not difficult to demonstrate that the polynomial

satisfies the following differential equation:

(x*— 1)%—2nxz = 0.

If we differentiate this equation with respect to x (n + 1), then we arrive
at the following equation:

d a dz(™ ' n) —
E[(I—x)T]+n(nT1)z()—O. (2.9)

Substituting y = z(n) in place of (2.9), we arrive at equation (2.8). From this
it is possible to conclude that the function

y=%(xz_1)" (2.10)

1 Equation (2.8) is a partial case of Gauss' equation (hypergeometric equation).
The property of the integrals of this equation is most fully and rigidly
studied in the analytical theory of differential equations. A detailed
presentation of the theory of spherical functions can be found in the mono-
graphs by E. Hobson [48] and J. Lense [49].
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is a partial solution of the equation which interests us. Since equation (2.8)
is linear and homogeneous, then the product of function (2.10) by any constant
will also be a solution of this equation.

In the theory of the potential we shall make use of solutions of equation /87
(2.8) arrived at by the Rodrigues formula, which is itself derived from equation
(2.10):

1 4t ()52 . ,1)11

Pp(x) = oY dx" (2.11)

The Rodrigue